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I. INTRODUCTION 

A power system has two basic functions. It converts energy from one 

form to another and transmits it from one place to another. Fundamental 

emphasis in both the design of power system components and in their 

operation is placed upon maintaining a continuous, orderly flow of energy. 

On occasion, however, a power system is subjected to disturbances which 

disrupt this orderly flow and which result in excesses or deficiencies of 

energy in various system components. One of the more critical components 

is the synchronous machine because it has the ability to store energy, in 

addition to providing for the conversion process from mechanical energy to 

electrical energy. Deficiencies or excesses of energy in the system are 

compensated for initially by changes in the kinetic energy of the machine 

rotors. The energy storage capability of the synchronous machine is 

limited, however, and if the disturbance is sufficiently large, an unstable 

condition will result causing the generator to lose synchronism. 

Classically the question of power system stability has been divided 

into two distinct areas of study, transient stability and steady-state 

stability. Transient stability concerns itself with answering the follow­

ing question. Given a specified operating condition and impact, will the 

generators remain in synchronism? The basic concern is to provide 

sufficient restoring forces to cancel out relative machine accelerating 

energies. 

Steady-state stability implies that a generator will remain in 

synchronism after being perturbed by some small random unspecified dis­

turbance. 
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Dynamic stability implies both transient and steady-state stability 

and, in addition, adequate damping of oscillations (58). 

One or more of the following approaches are generally used to increase 

power system stability (58). 

1. Reduction of disturbance both in magnitude and time. 

2. Increasing natural restoring forces through strengthening of 
the transmission system. 

3. Injection of braking energy through fast prime-mover energy 
control. 

4. Cross field excitation. 

5. Injection of braking energy through temporary switching of 
resistors or other network parameters. 

6. Increasing restoring synchronizing forces through transient 
forcing of excitation and consequent boost of internal machine 
flux levels. 

Economic considerations dictate which of the above approaches will be 

implemented in solving a particular problem. Certain generalizations may 

be made concerning each of the above approaches as follows. 

The effects of system disturbances may be reduced considerably by 

using high-speed circuit breakers and associated relaying allowing faults 

to be cleared in shorter time intervals. Development in this area appears 

to have reached a plateau, however, with small improvements in fault 

clearing time requiring relatively large additional costs. 

The relative strength of a transmission system is determined largely 

by economic rather than by technical considerations. 

Presently the last four approaches offer the greatest potential for 

economically improving system performance. 
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Modern steam turbine speed control systems have the capability of 

fast control valve and intercept valve closure to prevent turbine overspeed 

under load rejection conditions. Either or both of these valves may also 

be closed upon the detection of a loss of load and then reopened, the 

close-open cycle being referred to as "fast valving" or "early valving". 

This process minimizes the excess kinetic energy acquired by the turbine 

and generator rotor. 

If "fast valving" is to be used, the boiler and turbine control 

systems must be designed accordingly, and the logic controlling the fast 

valving must prevent excessive operation which would result in severe 

maintenance problems. 

With single field machines the effectiveness of damping through 

excitation control is related to the load angle of the machine. At no 

load, changing flux levels does not change power output. 

It has been shown that if a second field winding is added and the two 

windings are properly controlled, positive system damping can be obtained 

even during light or no load conditions (69). This approach appears 

especially desirable for machines feeding cable networks because it pro­

vides stable operation under low leading power factor conditions. An 

additional field winding must be added to the rotor, however, resulting in 

an increase in the cost of the generator. 

The use of braking resistors of suitable size, switched at the 

appropriate times, will theoretically eliminate transient stability prob­

lems (58), but because of the cost of resistors capable of dissipating the 

required energy and the associated switching apparatus, there have been 

few applications of this approach. Braking resistors could be particularly 
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desirable when used on hydrosystems where hydraulic turbine gates and 

water inertia do not allow measures analogous to fast valving as in the 

case of steam turbines (41). Switching of series capacitors in the 

transmission system to decrease line impedance has also been shown to be 

effective in increasing transient stability. The cost of the capacitors 

and switching apparatus is high, and the logic necessary to determine the 

optimum time for insertion is complicated. 

Transient stability may also be improved by excitation system forcing. 

The benefits that can be derived by this technique depend upon how fast and 

how high the excitation system can boost machine flux linkages. Higher 

response ratio exciters increase synchronizing torques thus helping the 

transient stability problem, but at the same time decrease damping torques, 

thus contributing to the dynamic stability problem. In the limit an ideal 

excitation system, one with no time delay and infinite gain, would hold 

the terminal voltage constant and destroy all natural damping of the 

machine (58). 

When high-speed excitation systems are adjusted to utilize their 

small time lags, there is often a need to Increase system damping. This 

may be done by deriving a stabilizing signal from speed or some other 

machine-related variable and, after appropriate phase compensation, feed­

ing this signal back into the excitation system which provides increased 

damping torques. 

Networks to accomplish the above are available commercially and are 

called power system stabilizers. In recent years they have found wide 

application in areas with dynamic stability problems which are generally 

those areas with appreciable hydrogeneration (31, 46, 64). 
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Power system stabilizers provide a good way of combating dynamic 

stability problems because they are relatively inexpensive and they may 

be installed on existing equipment with little modification. 

The stability problems of synchronous machines result from the 

inability to control their energy input and output quickly and accurately 

enough. The energy input is controlled by the turbine governor system 

which is mechanical and has appreciable time lags. The instantaneous 

power output of the machine may be modified by the excitation system which 

is electrical in nature, and, compared to the governor, it is very fast. 

Thus considerable effort has been directed to improvements in the excita­

tion system and auxiliary control systems associated with it. In this 

dissertation several possible improved control systems are developed and 

their effectiveness is compared with that of presently used systems. 
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II. REVIEW OF LITERATURE 

A. System Modeling 

Studies concerning various aspects of power system stability are 

intimately related to the problem of determining an appropriate mathemati­

cal model to represent the system and measuring or calculating the various 

parameters which are used in the representation. 

À significant simplification in synchronous machine modeling was 

achieved by Park in his development of a two-reaction theory of synchronous 

machines (90, 91, 92). A Park-type transformation in its orthogonalized 

form transforms a set of differential equations containing time dependent 

inductances into a set containing asymmetric speed voltage terms which 

considerably reduces the mathematical complexity of the representation (7). 

Prentice (97) carefully studied the various aspects of determining 

synchronous machine reactances and Rankin (99, 100) and later Lewis (75) 

developed techniques for normalizing the equations describing a synchro­

nous machine. Synchronous machines have been extensively analyzed and the 

literature on this subject is quite extensive (1, 24, 27, 35, 45, 73, 76). 

B. Analog Computer Simulation 

The differential equations developed in studying a particular problem 

may be solved either by digital or analog computer, but for studies involv­

ing detailed representations of the synchronous machine, the analog 

simulations have distinct advantages. Nonllnearities are more easily 

represented and parameter optimization is generally more easily and cheaply 

accomplished. 
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Rlaz (101) proposed an analog computer simulation of a synchronous 

machine suitable for voltage regulator studies; and, in a discussion of 

this paper, Thomas suggested a model based on the flux linkage form of the 

synchronous machine equations. Krause (68) developed this form further 

and Nandi (86) converted the representation to conform to proposed IEEE 

definitions (59) . Numerous other studies using analog computer representa­

tions are to be found in the literature (2, 3, 8, 10, 15, 109). 

C. Linear Studies 

Linear modeling has been extremely popular because of the relative 

ease in testing for stability by use of such techniques as eigenvalue tests 

or the Routh-Hurwitz criterion, and has been used by many authors in 

studying various aspects of the stability problem (23, 31, 83, 120). 

Other linear methods of analysis and synthesis such as root-locus 

plots and Bode plots, which have been extensively used in control systems 

engineering for many years, have found little application in the solution 

of power system control problems as evidenced by the small number of 

articles found which have used these techniques (94, 113). 

D. Synchronous Machine Control Systems 

The first control loop to be added to a synchronous machine was the 

voltage regulator. Its inclusion made It possible to maintain much tighter 

control of the machine terminal voltage and markedly increased the avail­

able synchronizing torques, thus increasing the steady-state stability of 

the synchronous machine (23). 
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Stability first became important about 1930 with the development of 

hydrogeneration sites located some distance from the metropolitan load 

centers. The power systems were well damped, however, and voltage regu­

lators were slow acting so the negative damping contributed by the voltage 

regulator presented no problems. In fact, stability studies were conducted 

in two parts. If the machine exhibited transient stability and steady-

state stability, it was assumed that adequate damping was present to 

insure that the machine would settle down to a steady state after the 

disturbance (58). 

Higher capacity generators with larger per-unit reactances and lower 

inertia constants, longer transmission lines, more numerous interconnec­

tions, and voltage regulators with shorter time constants all contributed 

to the dynamic stability problem and made it desirable to develop improved 

excitation systems for the synchronous machine. 

One of the first researchers to recognize the desirability of 

improved control systems and to develop them was Gabriel Kron (70). The 

basic system which Kron patented is shown in Figure 1. 

auxiliary 
signals 

amplifier lead-lag 
network 

amplifier exci ter synchronous 
machine 

Figure 1. Excitation system patented by Kron in 1954 
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Kron recognized that the phase lag caused by the excitation system 

decreased system stability limits and he introduced a phase lead network 

in the forward loop to counteract this effect. Kron indicated that it may 

be desirable, although not essential, to overcompensate with the phase lead 

network. For example, he indicated that typically the phase lag introduced 

by a system employing an electronic pilot exciter and rotating main 

exciter was approximately 45°, and the phase lead network should introduce 

approximately 65° phase lead at the natural frequency of the machine for 

this condition, thus providing an anticipatory effect. 

Kron also recognized that machine excitation should be controlled 

jointly in response to variations In terminal voltage and in accordance 

with rotational transient movements of the machine rotor produced by 

changes in the electrical load of the machine. He developed several 

circuits to generate the necessary auxiliary signals. 

In the preferred form of the invention, an auxiliary signal was pro­

duced by adding voltages proportional to the rate of change of both 

synchronous machine field voltage and field current. The signal propor­

tional to field voltage was degenerative, that is, an increase in field 

voltage generated an auxiliary signal which tended to decrease field 

voltage, and the signal proportional to field current was regenerative, 

that Is, an increase in field current caused a signal which tended to 

increase field current further. 

A slight modification of the above scheme allowed the generation of 

a signal which was proportional to the rate of change of flux linkages and 

was fed back degeneratlvely along with a regenerative signal proportional 

to field current. 
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Kron also developed circuitry to generate a stabilizing signal 

derived from such sources as the component of armature current in phase 

with armature voltage, synchronous machine power output, rotor speed, and 

load angle, and he suggested more complicated sources for the stabilizing 

signal, such as making it responsive to the difference in momentary speed 

changes between the generator and its load. 

E. Development of Auxiliary Control Systems 

Interconnection of both public and private utilities west of the 

Rocky Mountains in the mid 1960's and subsequent power and frequency 

oscillations on the Interconnected systems generated intense interest In 

the development of auxiliary control systems for synchronous machines. 

Initially, oscillations occurred at a frequency of about 5 cycles/ 

minute and auxiliary control systems applied to the governors of selected 

machines were capable of controlling the power swings, although continued 

movement of hydraulic oil, servo pistons, and wicket gates caused severe 

maintenance problems (67). 

Closure of two 500 KV lines interconnecting the Pacific Northwest and 

Southwest Increased the oscillation frequency to approximately 25 cycles/ 

minute and it was agreed that turbine controls and amortisseur windings 

would be ineffective in damping Intertle oscillations at these frequencies. 

It was known that the Instantaneous power output of a synchronous machine 

could be altered by excitation control, so various control loops were 

developed to feed an auxiliary signal into the synchronous machine excita­

tion system to Improve system damping (17, 19, 41, 50, 52, 107, 109, 113, 

126). 
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The problem of generating an appropriate stabilizing signal was 

explored analytically by deMello and Concordia (31) in some detail. The 

authors represented a synchronous machine connected to an infinite bus with 

a fourth order linear model, and, by varying tie line impedance and machine 

parameters over a normal range of values, they were able to make scatter 

plots of the gain and phase angle of the stabilizing function necessary to 

satisfy a given damping criterion. From these scatter plots the authors 

were able to deduce the form of a stabilizing network which they contend 

is almost universally applicable. 

The cumulation of the previously mentioned research efforts has been 

the development of commercial power system stabilizers by both Westinghouse 

and General Electric (46, 64). Both power system stabilizers have a 

transfer function of the following form: 

KT̂ s (l+Tgs) (l+T̂ s) 

(1+T̂ s) (I+T3S) (I+T3S) 

where range of parameter adjustment is as follows : 

Parameter 

Lead time constants T2, T̂  

Lag time constants T̂ , T̂  

Signal reset time constant T̂  

Stabilizer gain K 

Limit of stabilizing signals 
effect on terminal voltage 

Speed input signal 

Westinghouse 

.2 — 2 sec. 

.02 - .15 sec. 

.05 - 55 sec. 

.1 - 100 p.u. 

General Electric 

.2 - 1.5 sec. 

.02 - .1 sec. 

.1-50 sec. 

2 - 100 p.u. 

.02 - .25 p.u. .02 - .1 p.u. 

solid state tachometer 
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Both stabilizers are equipped with limiting to prevent excessive 

excursions of terminal voltage. Should the supplementary signal go to the 

limit and remain there for a time interval from 2 to 60 seconds, a failure 

of the stabilizer is assumed and its output is disconnected from the 

voltage regulator. 

The Westinghouse system obtains the frequency deviation signal from 

solid-state circuitry driven from the secondary of one of the machine 

potential transformers. The General Electric system uses a turbine-

mounted tachometer to generate the input to the supplementary control or, 

in the case of hydrogeneration, an appropriate signal is obtained from 

the 3-phase potential transformer secondary. 

Many power system stabilizers are presently installed and, if they 

are properly adjusted, they are capable of adding sufficient damping to 

the system to cancel the negative damping resulting from the high-speed 

exciters. 

The trend toward larger machines, higher system reactances and faster 

excitation systems will, in all probability, continue to necessitate 

further improvements in synchronous machine excitation systems. 
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K( 

1 + s Tc * V 

3T̂  

 ̂"if 

4 = 

K3 -

5̂ = 

6̂ = 

BE' q 
SKgg 

96" E' 
q 

9v. t 
3E' 6 

d̂o = 

% = 

g, change in electrical torque for a change in rotor 
q angle with constant flux linkages in the d-axis 

change in electrical torque for a change in d-axis 
flux linkages with constant rotor angle 

impedance factor 

demagnetizing effect of a change in rotor angle 

change in terminal voltage with change in rotor angle 
for constant E' 

q 

change in terminal voltage with change in E' for 
constant rotor angle  ̂

field open circuit time constant 

effective field time constant under load 

Figure 2. Block diagram of linearized synchronous machine 
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III. DEVELOPMENT OF BASIC CONCEPTS 

Insight into various aspects of the stability problem can be developed 

by considering a linearized model of a synchronous machine connected to a 

large system through a transmission line (31, 111). The model may be 

developed from more complicated representations by neglecting amortisseur 

windings, armature resistance, derivatives of armature flux linkages, and 

saturation (see Appendix B). The model and definitions of various 

parameters are shown in Figure 2. For simplicity the entire excitation 

system is represented by a first order system having gain and time 

constant T̂ . 

The torque-angle loop of the model is shown in Figure 3. Although 

nonexistent in the linearized model, the feedback path through block D 

has been added to facilitate comparison with the standard form of the 

characteristic equation for a second order system and to develop the 

concepts of synchronizing and damping torques. 

mA 377 
2 2Hs 

Figure 3. Torque-angle loop of linearized synchronous machine model 
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The closed-loop transfer function for the system of Figure 3 is 

377 
-iA = 2H [1] 

2 + 2 _D 2 ïiîZI 
® 2 2H ® 2 2H 

Comparison of the denominator of this transfer function with the 

characteristic equation of a second order system 

ŝ  + 2Çci)̂  s + 0)̂  = 0 [2] 

shows that the natural frequency of the system is 

"n = \/ 
Ki377 S. 

2 2H 

which for a typical machine has a value between 0.5 and 2.5 Hz. 

The damping ratio is 

[3] 

= D /P 1 
2 V 2 2HKI 

[4] 

which is very small, normally between 0.03 and 0.05. 

Figure 3 also serves to illustrate the concepts of synchronizing and 

damping torques. An increase in mechanical torque, T̂ ,̂ results in an 

increase in which is fed back through block D and results in a retard­

ing torque at the summing junction. Such a torque which is in phase with 

speed will be defined to be a damping torque. Another component of 

retarding torque is fed back through block from 6̂ . Such torques which 

are in phase with 6̂  are defined to be synchronizing torques. Stability 
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can be endangered by a lack of either, or both, synchronizing or damping 

torques. 

In Figure 4, the effect of armature reaction is expressed as a 

demagnetizing influence resulting from increased rotor angle feeding back 

through K̂ . The effect of this component of torque can be seen from the 

transfer function relating change in torque to change in angle. 

"A 
1 + S T' K, 

do j 
[5] 

Figure 4. Block diagram showing torque developed as a result of armature 
reaction 

The coefficients are always positive, so at steady state this feedback 

loop produces a synchronizing torque which is opposite in sign to that 

produced through The familiar steady-state stability criterion with 

constant field voltage defines the stability limit as the condition for 

which the steady-state synchronizing power coefficient is zero. 

At frequencies where w >> 1/K-T' , the phase angle of the above 
j do 
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expression is +90°, which means that at these frequencies the torque due to 

this loop is almost entirely damping torque. A typical value of l/K.T' 
3 do 

might be 1/.3410(6) = .486 radians. If w = lO/K̂ T̂ ,̂ for example, this 

would correspond to a frequency of .745 Hz. Thus, this loop contributes 

some damping in the range of frequencies near the natural frequency of the 

synchronous machine. 

Figure 5 shows the block diagram after adding a simple voltage regu­

lator. Typical values for and T̂  might be 25 and 0.05, respectively, 

where is the transient regulator gain, and is considerably lower than 

the steady-state gain. The transfer function for this figure, neglecting 

effects through K̂ , is 

% 
*4 - K^KgCl + s 

[6 ]  

ref 

Figure 5. Block diagram after adding voltage regulator 
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Comparison of Equations 5 and 6 shows that at low frequencies. Equa­

tion 6 is smaller than 5 by a factor of l/K̂ K̂ Kg, while at high frequen­

cies the two expressions become nearly equal. The net effect of adding 

the voltage regulator is to reduce the component of damping torque coming 

through to a level where it is negligible. 

The component of torque resulting from a change in angle with voltage 

regulator effects included may be analyzed by developing the transfer 

function of the block diagram shown in Figure 5. The resulting transfer 

function, neglecting K̂ , is 

[7] 

[81 

«4 (1/K3 + KjKj) + s(T̂ /K3 + 

which at low frequencies reduces to 

Ti % 

for large K̂ , and this loop produces synchronizing torque. The total 

synchronizing torque may be found by adding the signals through and 

the regulator loop 

- KJKJ/KJ [9] 

For normal loadings is high and T̂  ̂is significantly greater than zero. 

At high system transfer impedances and heavy loadings, may approach 

zero or even become negative, and for cases where is small, a negative 

value of increases synchronizing torque producing a beneficial effect. 

I 

The damping component of torque due to regulator action is 
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[10] 
«û ~ (I/K3 + KgKg - Ts)2 + (Tg/Kg + T^^)2 

When Kg becomes negative, the damping torque also becomes negative 

which may lead to an unstable condition. 

Thus, we have conflicting requirements. In the cases when Kg is 

negative, which are the ones generally involving stability problems, the 

voltage regulator is of great help in producing synchronizing torques, but 

in so doing it may add negative damping, causing the system to oscillate. 

A satisfactory solution to the problem can normally be found by 

adding just enough regulator gain to provide adequate synchronizing power 

coefficient without cancelling all of the inherent machine damping. 

It has been recognized for some time that damping torques can be 

increased by feeding an auxiliary signal into the excitation system of a 

synchronous machine (70). This signal may be derived from a number of 

sources, but because rotor speed is relatively easy to measure with 

sufficient accuracy and has been found to be a suitable signal, it has 

most often been used. 

In order to cancel phase lag introduced by the regulating circuit, 

the speed signal must be fed through a stabilizing function G(s) as shown 

in Figure 6. The transfer function associated with this figure is 

A. Increased Damping Resulting From Auxiliary Signals 

T 
sifiA _ 

G(s) KgK̂  
[11] 

(I/K3 + K̂ Kg) + s(T̂ /K3 + T'̂ ) + ŝ T'̂ T̂  
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ŝig A 

<0 

G(s) 

C
O

 

K c  

1 +: KsTdk 1  + s T (  

Flgure 6. Component of torque produced from speed-derived signal as a 
result of voltage regulator action 

If is to provide pure damping, G(s) should be a function having 

phase lead equal to the phase lag of Equation 11. Ideally it would be of 

the following form: 

C(l/K. + K K, + s(T /K- + T' ) + ŝ T' T ) 
G(s) = 2 E_6 e__3 do dû_L_ [12] 

Such a function is not physically realizable; therefore, some compromise 

function must be developed which provides damping over the spectrum of 

expected frequencies of oscillation. There are an almost infinite number 

of functions which may be used for G(s) which provide increased system 

damping. One form that has been suggested (31) is 

nf \ k s(l + sTi)2 
G(s) = [13] 

(1 + sT)(l + sTg)̂  
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where typical values of parameters might be 

T 2 to 4 

0.1 to 0.2 

TG .05 

k/T 10 to 40 

Since the machine and exciter K's enter Into the expression for 

an Ideal G(s), it is Instructive to observe how they vary as tie line 

Impedance and machine loading are changed. Appropriate equations for 

the various K's are developed during the linearization process (see 

Appendix B) and are listed in Table 1. A simplified phasor diagram is 

also necessary to define the machine operating point, and is shown in 

Figure 7. 

d- oxis 

qo 
axis 

E'x-

- V 

Figure 7. Phasor diagram used to specify initial conditions of machine 
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Table 1. Parameters of linearized synchronous machine model 

E_ /Tvg 
Â sin + (WqLg + cos 6̂ ] K, = ia£  ̂' B 

V AVB 

%Eqo 
*2 = + Iqo 

A t(Oo(Lq-Jld)(u)oLE + ŵ Lq) sin - Wo(Lq-2d)RE cos 6̂ ] 

 ̂ Wo(Lq-&d)(woLE + ûĵ L̂ ) 

K3 = 
 ̂̂ (Xj - X̂ ) (X, * Xg)--̂  

K4-
/s 'B "d -

Kc = 
VdoWoLq 

AV to 

J [- RE "̂ 0 + (\ + V ô] 

[/3"Vb sin 6̂  Rj. + yiVg cos 6̂  (ŵ Lg + 

+ [\/̂  Vg cos 6, Rg - jfâ Vg sin 6̂  (m̂ Lg + ŵ Lg) ] 
to 

„ VoŜ  \o = 
Wo&dfwô E + w.L̂ ) 

1 -
o q' 

where 

A = RG + (M^LG + W^&J) (W^LG + (U^L ) 

In order to reduce the amount of labor involved in investigating a 

large number of conditions, a short computer program was written to calcu­

late the K's for a given set of system parameters and the generator loading 
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(see Appendix C). The system parameters and various machine power outputs 

which were used to calculate the following curves are shown in Table 2. 

Table 2. System parameters and machine power outputs used to calculate K's 

Machine parameters 

Tie line parameters 

Machine loading per phase 

Xj 

d̂ 

H 

d̂o 

= 1.159 per unit 

= 1.136 

= .133 

= 6.7 sec. 

=  6 . 0  

Bg + jXg = 0.02 + jO.4 per unit 

0.0 + jl.O 

0.2 + jO.4 

1.0 + jl.O 

1.0 + j5.0 

P + jQ = 0.33 + jO.O per unit 

+ jO.25 

- jO.25 

0.66 + jO.O 

+ jO.5 

- jO.5 

1.00 + jO.O 

+ jO.75 

- jO.75 
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I— 

LU 
a. 

és 

30 POWER OUTPUT, p.u. 30 POWER OUTPUT, p.u. 

CO 

30 POWER OUTPUT, p.u. 30 POWER OUTPUT, p.u. 

at 

>o 

1 2 3 0 1 2 3 
30 POWER OUTPUT, p.u. 30 POWER OUTPUT, p.u. 

Figure 8. Linearized model parameters as a function of power output for 
various var loadings and tie line Impedances 
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The resulting curves are shown in Figure 8. From these curves it is 

noted that Kg, and vary over a rather large range, but, in general, 

increase with increased machine loading. and are not greatly 

affected by system loading or changes in tie line impedance, and Kg, the 

parameter whose sign determines whether damping is positive or negative, 

is, for this particular system, always negative. 

B. Generation of Auxiliary Stabilizing 
Signals with an Analog Computer 

Although the linear model presented provides an excellent means to 

define the problem and to develop concepts which may be used to increase 

system damping, it is recognized that it neglects amortisseur windings 

and other effects which may well be important. This fact, coupled with 

the observation that the problem will involve optimization of various 

parameters,suggests that actual solutions be attempted using the analog 

computer. 

We may conceptualize the problem as follows. The synchronous machine 

may be represented as a black box with mechanical torque, T̂ ,̂ and the 

terminal voltage reference, as inputs, and rotor position, 6, and 

some auxiliary signal not yet defined as the outputs (see Figure 9). 

raf 

STABILIZING 
SIGNAL 

ANALOG 
COMPUTER 

SYNCHRONOUS 
MACHINE 

Figure 9. Analog computer used to increase damping 
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A stabilizing signal from the synchronous machine is fed into the 

analog computer where it is processed in some manner to generate an auxil­

iary signal which is fed into the excitation system of the synchronous 

machine. It was noted earlier that the main cause of decreased damping 

was the phase lag in the voltage regulator loop of the linear model, and, 

in order to increase stability, some sort of phase lead must be introduced, 

e.g., by an appropriate G(s). 

Time scaling is readily accomplished on the analog computer. That is, 

solutions may be calculated at speeds faster, equal to, or slower than a 

system operating in real time. The above observations suggest that an 

appropriate stabilizing signal might be generated by running an analog 

computer simulation of a synchronous machine in parallel with the actual 

system, but at a speed greater than real time. This idea is represented 

in Figure 10. To determine if this scheme is an appropriate technique, 

the transfer function of Figure 10 may be determined if the linearized 

model of Figure 2 is inserted into the block labeled "synchronous machine" 

and some unspecified transfer function Gĵ (s) is put into the analog com­

puter simulation block. 

T m. 
SYNCHRONOUS 6 

MACHINE 

ANALOG COMPUTER 
SIMULATION OF 
SYNCHRONOUS MACHINE 
RUNNING AT A SPEED 
GREATER THAN REAL TIME 

Figure 10. Analog computer operating in parallel with synchronous machine 
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Block diagram algebra is used to simplify the representations, and 

the result Is shown in Figure 11, where A and B represent rather compli­

cated transfer functions formed in the reduction process. The block 

diagram of Figure 11 clearly shows that Ĝ (s) is not contained in the 

open-loop transfer function of the system and thus it cannot be used to 

modify poles and zeros of the synchronous machine. 

mA 

Figure 11. Block diagram indicating parallel operation of synchronous 
machine and analog computer after reduction 

It was noted previously that was an appropriate source of compen­

sating signals, so the approach to the problem is modified as shown in 

Figure 12. To simplify analysis, the fourth order linear model of Figure 

2 is again inserted directly into the box of Figure 12 marked "synchro­

nous machine". The box marked "analog computer simulation" is replaced 

by the system shown in Figure 13. This is essentially the same diagram 

as Figure 2, but it has been redrawn to show as an input and as the 

output. In addition, a damping term, D, has been included, and a parame­

ter, K, has been added to represent the ability to change time scaling in 

the analog computer model. 

Using block diagram algebra, it is again possible to reduce the 

system suggested by Figure 12 to a form suitable for analysis. The 
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resulting open-loop transfer function has a numerator of fourth order and 

a denominator of eighth order. The complexity of this system makes it 

desirable to explore the system stability by root-locus techniques using 

a computer program to plot the root-locus and calculate polynomial 

coefficients. 

SYNCHRONOUS 

MACHINE 

ANALOG COMPUTER 
SIMULATION 

Figure 12. Analog computer producing stabilizing signal from speed 

K = TIME SCALING 

D = DAMPING TERM 

377K 

aui 

Figure 13. Analog computer model of synchronous machine with input and 
output 
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A root-locus plot of the system of Figure 2 is shown in Figure 14. 

System parameters and generator loading have been chosen so as to provide 

an almost oscillatory condition as evidenced by complex poles very near 

the jw-axis. 

j20-

torque - angle 
loop 

-20 \ -15 / -10 

regulator - j l O  

generator field 

Figure 14. Root-locus of system shown in Figure 2 with parameters chosen 
to make system almost oscillatory 

A pole-zero plot of the system suggested by Figure 12 is shown in 

Figure 15. Comparison with Figure 14 readily identifies which poles and 

zeros have been added as a result of adding the analog computer repre­

sentation. In Figure 15, sufficient damping was added to the analog com­

puter representation to move the complex poles of that representation to 

a favorable position. Then K, the time parameter, was varied until the 

complex pair of zeros was produced. The root-locus resulting from the 

parameter choices mentioned above is shown in Figure 16. It is to be noted 

that the poles associated with the torque-angle loop of the generator make 

an excursion into the left half plane before they cross the jw-axls. Thus 

damping is Improved for certain values of regulator gain. 
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I XXo I I— 
-20 -15 -10 

I KKo 
-5 0 

X 

jw 

j20 

k j l O  

>--jlO 

— j20 

Figure 15. Pole-zero plot of Figure 12 

ju. 

- j20 

j-jlO 

I »Y«" I r 

-20 \ -15 -10 
I XKO 

-5 

10 

-j20 

Figure 16. Root-locus resulting from varying voltage regulator gain for 
compensation scheme of Figure 12 

Inspection of Figure 15 reveals that adding a feedback path through 

an analog computer simulation adds four additional poles and four zeros. 

The two additional poles on the negative real axes are located near two 

of the zeros and comparison of Figures 14 and 16 shows that the introduc­

tion of these pole-zero pairs has little overall effect on the root-locus. 
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The complex poles and zeros which have been added are, however, able to 

pull the torque-angle loop poles into the left half plane before they 

cross the jw-axls, thus increasing the stability of the system. It is 

also noted that the complex pole-zero pairs which resulted from feedback 

through the analog computer representation could equally well have been 

added by a bridged-T filter with appropriately chosen parameters. 
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IV. ROOT-LOCUS ANALYSIS OF A LINEARIZED SYNCHRONOUS 
MACHINE AND EXCITATION SYSTEM 

In order to study various control systems which may be applied to 

the excitation system of a synchronous machine it is necessary to develop 

a more detailed representation of the system. 

The linear model of the synchronous machine analyzed in the previous 

chapter may be combined with a linearized model of the excitation system 

(see Appendix D) as shown in Figure 17. The model Includes provision for 

adding various types of compensation networks. L̂  and L̂  are the numera­

tor and denominator, respectively, of a series compensation network 

Inserted in the feedforward loop of the exciter. Similarly, R̂  and R̂  

result from a rate feedback loop deriving its input from speed deviation, 

and F̂  and Fg are the numerator and denominator, respectively, of a 

transfer function representing rate feedback from the excitation system. 

Block diagram algebra may be used to simplify the block diagram of 

Figure 17. Initially the takeoff point from is moved to 6 and the 

torque-angle loop of the synchronous machine is closed as shown in Figure 

18. The takeoff point for the feedforward loop through Kg may now also 

be moved to 6, and, since signals through the Kg and Kg loops are then in 

parallel, these may be combined. The feedback loop composed of K̂  can now 

also be eliminated as shown in Figure 19. Finally, the takeoff point for 

the excitation system rate feedback may be moved to v̂  as shown in Figure 

20. 

Further reduction is possible but the particular steps to be followed 

depend upon which compensation networks and parameters are to be studied. 
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Figure 17. Block diagram of synchronous machine and exciter 
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Figure 18. Block diagram after moving takeoff point and closing torque-angle loop 
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Figure 19. Elimination of feedback path through 
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regulotor 

speed feedbock 

excitation rate feedback 

1+ sT, 

(I + sK )(2H 5=^ 4.377K, ) - 3 7 TKgKgK 
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C\ 

Figure 20. Block diagram of synchronous machine and exciter after reduction 
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A. Development of the Open-loop Transfer Function 
to Study Effect of Varying Amplifier Gain, 

The transfer functions in the feedback loops of Figure 20 are put 

over a common denominator, Figure 21, and the three feedback loops are 

then combined. The open-loop transfer function which results is 

voltage regulator 

I 1 
complex zeros speed feedback 

I 1 I 1 
rKR{2HK6s'̂  + 377(KIK6-K2K5)}RDFJ)K3 + S%FJ)K3(1+Trs)K2 

excitation system rate feedback 

+ F̂ Rgd+T̂ s) { (l+sKgT̂ g) (2Hs4377K]̂ ) - 377K2K3K4}] 
[14] 

Lj) (l+T̂ s) (Kg+Tgs) {(l+sK3T̂ jj)(2Hŝ 377Kp - 377K2K3K̂ } R̂ F̂ d+T̂ s) 

/ \ ' ' voltage 
amplifier exciter generator regulator 

complex torque-angle loop 
poles and field pole 

The accuracy of this transfer function may be checked by reducing 

the generator model to a first order system as follows. 

Set K̂ —0 L̂ =l 

2̂=0 Lu=l K3Tdo=TG 

K̂ =0 Fjj=(l+Tps) 

K̂ =0 Fjg=sKp 

Kj=l K̂ -O 
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K3(-377K2K5+K6(2H8»+377K,)) 

LD(I + ST^)(KE+8TE) (1 + SK3TJO)(2H^+377K|)-377K2K3K4 

regulotor 

KR(-377K2K5-»-K6(2HS^+377K,))RJJFJJK3 

{1 + sTp)( -377 Kg Kg + Kg(2HsS377K,)) RoF^Kg 

speed feedback 

s +sTp)K2 

RoKgFg (1 + BTp)( - 3 7 7 KgKgf Kg(2Hf + 377K, )) 

excitation rate feedback 

F^C + sT^)Rj,((l + sKgTj^X2Hs'+377K,) -377K2K3K4) 

•<g(2HsV377K,)) 

Figure 21. Block diagram of synchronous machine and exciter after putting 
feedback loop over a common denominator 
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Ka [(l+TpS){2HK̂ g8̂ } + 0 + sKp (1+sT̂ s) (1+sKgT̂ )̂ (2Hŝ ) ] 
OLTF = 

(l+T̂ s) (KE+Tgs) (l+sKgTjg) (ZHŝ ) (1+TpS) (l+T̂ s) 

Ka [KgKg(l+TpS) + sKp (l+T^s) (l+sK^Tj^) ] 

~ (1+TAS) (Kg+TgS) (1+Tĵ s) (l+sKgT̂ o) (l+T̂ s) 

Replace with Tq and with Kg. 

KAKJ^Kg(1+TFS) + SKAKP(1+TJ^S) (1+TgS) 

(1+TAS)(Kg+TgS)(1+T̂ s)(1+sTg)(l+T̂ s) 

+ %KgTp(l/TF+8) 

TATETRTGTP(1/TA+s)(Kg/Tg+s)(1/T̂ +s)(l/T̂ +s)(l/T̂ +s) 

T T T ïèr s(l/TR+s)(l/T{jfs) + Kĵ /TRCI/TJ+S) 
AEG L ̂ F̂ G . 

OLTF = 

(1/TA+s) (Kg/Tg+s) (1/Tĵ +s) (1/Tg+s) (l/T̂ +s) 

This is the same expression for the first order model derived in 

reference (7). 

The open-loop transfer function of Equation 14 has the denominator 

in factored form except for the third order polynomial arising from the 

machine torque-angle loop and field poles. This loop has been closed 

because arbitrary compensation networks cannot be inserted into it and 

its closure simplifies the numerator of the open-loop transfer function. 

The parameters of this loop are fixed for a given machine design and 

loading condition, and thus once the polynomial is factored the pole 

positions resulting from it are known and constant irrespective of 
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various compensation networks placed in other loops. The numerator is not 

in factored form, however, and zero locations are found by multiplying out 

expressions, combining terms, and then factoring. 

B. Uncompensated System 

If all compensation is neglected by setting L̂ =Lg=Fg=R̂ =l, and 

Fjj=Rjj=Tĵ =0 the resulting root-locus is shown in Figure 22 where the poles 

and zeros resulting from various terms are readily identified. This root-

locus clearly shows the basic problem. The system response is dominated 

by a pair of complex poles arising from the torque-angle loop of the 

synchronous machine and a pole near the origin resulting from the field 

winding. Small increases in amplifier gain drive the complex poles 

into the right half plane making the system unstable. 

,v • 
Note that if all feedback loops are removed by setting K̂ , ' che 

voltage regulator gain, equal to zero in Equation 14 and Fg=Rg=L̂ =Lg»F̂ =l 

and Tĵ =Î =0, a third order polynomial occurs in the numerator which will 

cancel the one in the denominator of Equation 14 leaving an open-loop 

transfer function of the form 

K 
(1 + I^S) (KG + TGS) 

having root-locus asymptotes of 90° and 270°, which is a stable configura­

tion for all gains. 
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C. Rate Feedback 

Consider adding rate feedback in the excitation system. The field 

voltage is measured and fed back through to the voltage summing 

junction. One form of transfer function which has been used for this 

feedback loop is 

F^/FG = SKP/L+TPS [15] 

The open-loop transfer function is found by inserting Equation 15 into 

Equation 14 and setting RjpO, Rg=L̂ =Lg=l. The resulting expression is 

Ka IK̂ {2HKgŜ  + 377(Kĵ Kg-K2K3)}(l+Tĵ s)K3 

+ sKp(l+T̂ s){(1+sKgTĵ )(2Hs2 + 377K̂ ) - 377K2K2K4}] 

(l+T̂ s) (Kg+TgS) {(l+sKgTĵ ) (2Hs2 + 377Kĵ ) - 377K2KgK̂ } (1+T̂ s) (l+T̂ s) 

This form is not appropriate for a root-locus plot using gain Kp 

because Kp does not appear as a product of all terms in the numerator. 

An appropriate open-loop transfer function which contains Kp multiplying 

all terms in the numerator is developed as follows. The regulator loop of 

Figure 21 is first closed, resulting in the block diagram of Figure 23, 

and the resulting open-loop transfer function after combining the parallel 

feedback branches is 

+ 377K̂ ) - 377K2%] + 

RgFgKgfLgd+TAs) (Kg+Tgs) (1+T̂ s) [(l+sKjTjg) (2Hŝ  + 377Ki) - 377K2K3K4] 

+ Kĵ Lj,KAK3[2HKgs2 + 377(K̂ Kg-K2Kg)]} 
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KgL̂ K̂ C ZHKgs' 4 377(K,K,- KgKglKlt sTp) 
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speed feedback 
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excitation rate feedback 
yU+ »K3T̂ )(2Hf4̂ 377K|)-377KgKgK̂ ) 

FjjK̂ ZHKgSS- 377(K,Kg-K2Kg)) 

Figure 23. Block diagram after closing regulator loop 
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The transfer function is again checked by reducing the generator 

representation to a first order system as follows. 

Set Ki=0 LN=1 

K2̂ 0 LD=1 

K3=Kg %=sKj. 

K4=0 Fjj=l+TpS 

K5=0 %=0 

K3TDO=TG R])=l 

Equation 17 becomes 

KgK̂ (l+Tj ŝ){sKp (1+sTg) (2HS2) + 0} 

CLTF = 

Kg(l+Tps) { (1+T̂ s) (Kg+Tgs) (1+T̂ s) (1+sTg) (ZHŝ ) + Kĵ K̂ KgZHŝ } 

sKpd+Tgs) KgK̂ d+TRs) 
= R = HG 
KgCl+Tps){(l+T̂ s)(KE+TES)(1+TRS)(1+Tgs) + KRK̂ KQ} 

Find the closed-loop transfer function. 

K̂ Kgd+Tĵ s) (1+Tps) Kg 

Kg(l+Tps) {(1+T̂ s) (Kg+TgS) (1+Tĵ s) (l+Tg8)+KgK̂ Kg}+K̂ KgKpS (1+T̂ s) (1+TgS) 

KA Q̂TRTFCI/TR+S) (1/T̂ s) 

VeVĝ F  ̂ (KE/Tg+s) (1/Tĵ +s) (1/Tg+s) (l/T̂ +s) 

+ Kĵ K̂gTp(l/Tp+s) } + K̂ Kj.Tĵ TgS(l/Tĵ +s)(l/Tg+s) 
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T̂ TETĵ TgTp{(l/T̂ +s) (Kg/Tg+s) (1/T̂ s) (l/T̂ +s) (l/T̂ +s) 

K.K„ 
+ T T T T T [KRT,(l/T,+s) +—? s (1/T +s) (1/T +s) ]} 

K K 
T̂ TgTp (1/TR+s) (l/Tj+s) 

(L/T̂ +s) (Kg/Tg+s) (1/TR+S) (1/Tçfs) (1/Tj+s) 

K.Kg rK K KpT T 
+ ^ T T F" T~ (1/T +s) + „ ^ Y S (l/T„+s) (1/T +s) 

L ^R ^R f̂'̂ G  ̂  ̂

K K 
(1/Tĵ +s) (1/Tp+s) 

WE 
(1/T̂ +s) (KE/TE+S) (1/TR+S) (1/Tg+s) (1/Tj+s) 

K.K rKp Tp Kp 
+ ^ (L/TJ+E) (I/T5+S) + — (L/TP+S) 

This is the same expression derived for a first order model in 

reference (7) . 

If the following substitutions are made in Equation 17, L̂ =Lg=Rp=l, 

Rjj=Tĵ =0, Fjj=sKp, Fjj=(l+Tps), Tp=.05, the resulting root-locus is shown in 

Figure 24. must be increased until the RHP poles move very near the 

complex zeros at about ± J19.6 to make the system stable, but at this gain 

level the root-locus branches from the complex poles in the LHP have 

already arrived near the second order zeros at the origin producing a poorly 

damped response. 
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For Tp=10 (see Figure 25) the pole added by the denominator of the 

excitation system rate feedback term lies between the two zeros near the 

origin and a root-locus with different characteristics is obtained. The 

generator torque-angle poles will move to the complex zeros, but the 

poles on the real axis now move to the zeros near the origin and dominate 

the response of the system. 

D. Power System Stabilizer 

Recently an auxiliary control system called a power system stabilizer 

has been developed to combat dynamic stability problems occurring in 

regions with significant amounts of hydrogeneration, or resulting from 

high-speed excitation systems. This device is a rate feedback control 

loop operating from a speed deviation signal. Lead-lag networks in the 

feedback loop are adjusted to cancel phase lags of the excitation system. 

One form of the transfer function often used is as follows, 

% _ GEN s(l-fsTi)̂  

% (1+sT) (l+sTg) 2 

where appropriate parameter values are suggested by deMello and Concordia 

(31). 

= 0.20 

T2 = 0.05 sec 

T = 3.00 

The open-loop transfer function with the above speed feedback is 

developed from Equation 17 so that the effects of changing GEN may be 

observed. 
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If Ljj=Ljj=Fjj=l, Fjj=Tĵ =0 the resulting transfer function Is 

K̂ GRN ŝ (l+sT̂ )̂ K2K3 

(1+sT) (1+ST2)̂ {(1+T̂ S) (Kg+Tgs) [(l+sK̂ Tĵ ) (2Hs4377K̂ ) 

+ KrKaK3[sHKgs2+377(KiKg-KgKg)]} 

and the resulting root-locus Is shown In Figure 26 for positive GRN and 

Figure 27 for negative GEN. 

The system response is again dominated by a pole very near the 

origin in Figure 26. Figure 27 would lead to an unstable configuration 

because of the movement of the complex pole pair farther into the right 

half plane. 

E. Bridged-T Network 

As mentioned previously, the basic problem of the generator excita­

tion system is the dominant second order poles resulting from the torque-

angle loop of the machine as shown in Figure 22. Inspection of this 

figure also reveals that if the complex zeros occurred below the complex 

poles then the root-locus from the poles would break away into the left 

half plane (LHP), a very desirable situation. The complex zeros result, 

however, from the term 

t2HKgs2 + 377(K̂ Kg-K2Kg)] 

of Equation 14 and are functions of machine and transmission line parame­

ters and machine loading and thus are not easily varied. 
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The root-locus of Figure 22 and the analysis of the previous section 

suggest that a brldged-T network in the forward loop with judiciously 

placed zeros might cause the torque-angle loop poles to break away Into 

the LHP. 

The appropriate open-loop transfer function Is developed from Equa­

tion 14 by setting R]j=Fp=l, %=Fjj=0 and Ljj»»ŝ  + rnUgS + and 

2 2 Ljj=s + nŵ s+Wg and letting r=.l, n=2 and 0)̂ =23. The resulting root-

locus obtained by varying Is shown in Figure 28. The torque-angle loop 

breaks into the LHP as desired but the system becomes unstable at rela­

tively low values of (K̂ =152) . 

The location of the complex zero pair of the bridged-T is also fairly 

critical. For example, if of the brldged-T = 19.7 rad/sec with the 

same r and n as above, the root-locus of Figure 29 results and the torque-

angle loop poles again break into the BHP. Somewhat similar results occur 

for the brldged-T tuned for a higher frequency WQ=26 rad/sec and r=.4 and 

n=2. chosen to move the zeros farther into the LHP as shown in Figure 30. 

Intuitively, the effectiveness of the bridged-T may be explained as 

follows. If damping were to be represented in the block diagram of Figure 

17 there would be a feedback path from to the torque summing junction 

with the gain of this path determining the amount of damping. Pure damp­

ing could also be obtained through the feedback path ̂ /Rg if the phase 

lag introduced by excitation system and generator field were zero. This 

possibility will be explored later. The other possible path for damping 

is through the voltage regulator loop. The takeoff point for this loop 

is 6 which lags tô  by 90°, and additional phase lag Introduced by the 

excitation system and field produces a signal at the torque summing 
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junction having a detrimental effect on system damping. The brldged-T 

filters out components of this signal near the natural frequency of the 

machine, and as the root-locus of Figure 28 demonstrated, might be used 

to Improve stability and damping to some extent. 

To find a source for additional damping signals we return to the 

feedback through B̂ /RQ, and recognize that signals through this loop will 

also be filtered by the forward loop brldged-T of the exciter which is an 

undesirable situation if additional damping near the natural frequency of 

the machine is desired. A solution is to move the brldged-T to the regu­

lator feedback loop. The root-locus for this condition with no other 

feedback paths is the same as Figure 28. 

Additional compensation schemes may be explored after developing an 

appropriate open-loop transfer function for a brldged-T filter placed in 

the voltage regulator feedback loop as shown in Figure 31. 

The resulting open-loop transfer function is 

F. Brldged-T and Two-stage Lead-lag with Speed Feedback 

[KRRJ3FJ)K3 { 2HKgS ̂+3 7 7 (K1K6-K2K5) } { s ̂BTls+BT2 } 

+ siyCgKgPgd+T̂ s) {ŝ BT3s+BT2} 

+ FuRd(1+Tjs) {(l+sKgTjo) (2Hŝ +377Ki)-377K2K3K4}{s4BT3s+BT2}] 

[ldCI+T̂ S) (KJ+Tes) { (l+sKgTdo) (2Hs4377Ki) -377K2K3K4̂  
[18] 

R̂J)FD( 1+TĴ S) { s 2+BT3S+BT2 i 
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Figure 31. Block diagram showing addition of bridged-T filter to regulator feedback loop 
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A two-stage lead-lag network is now added to the feedforward loop of 

the excitation system by setting 

Ljj/Ljj = (T̂ s+1)2/(T2S+1)2 [19] 

and speed feedback is added by setting 

%/Rj) = GKN [20] 

The resulting open-loop transfer function is 

(Tî ŝ +ZT̂ s+l) ZHKgŝ +377 (K̂ Kg-KgR̂ ) }{ŝ +BTls+BT2} 

+ sGRNKgKgK̂ d+Tĝ s) {ŝ +BT3s+BT2} ] 

(T2Ŝ +2T2S+1)(l+T̂ s)(KE+T̂ S) 

{(L+sKgTdo)(2HS2+377KI)-377K2K3K4}(1+TRS){ŝ +BT3s+BT2} [21] 

If the following values are chosen for the various parameters, the 

root-locus shown in Figure 32 results. 

0) - 21 rad/s o 

r = .1 

n = 2 

=  . 2  

Tg = .05 

CRN = 3.3 

ec 

sec 

sec 

pu 

K - pu 

As will be shown later, the idea of Figure 32 results in a stable 

configuration when it is applied to the nonlinear analog computer model. 
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so this configuration is superior to that of Figure 28 because much 

higher values of can be used resulting in a smaller steady-state error. 

Also note that this configuration results in the movement of the 

synchronous machine field pole away from the origin to a location where 

it does not so completely dominate the system response. 

Comparison of Figure 28 and Figure 32 also shows that the complex 

zeros on the jw-axls have moved upward in the latter. Inspection of 

Equation 21 shows that these zeros result from the fourth order polynomial 

in the open-loop transfer function numerator and, further, that the 

coefficients of the numerator are functions of speed feedback GRN. Also 

note that GRN does not appear in the denominator of Equation 21 and, 

therefore, does not change positions of the poles of the open-loop trans­

fer function. 

We now explore the effect of GRN on zero locations by manipulating 

the fourth order polynomial of the numerator into a form appropriate for 

a root-locus study as shown below. 

GRN s{K.KoK2}{ŝ  + BT3s + BT2}(1+Ti,s) 
1 + LJ-L —̂  0 [22] 

+ 377(K̂ Kg-K2Kg)}{s'̂  + BTls + BT2} 

The resulting root-loci for GRN positive and negative are shown in 

Figures 33 and 34. A feedback path through a positive GRN is preferred as 

shown in Figure 33 because the locations of all zeros remain in the left 

half plane. The value of GRN used in the previous example was 3.3 pu. 

This value was chosen because preliminary analog computer studies indicated 

It provided a workable solution. 
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G. Cancellation of Third Order Polynomial 

Another approach to the problem may be explored by considering 

Equation 14 again. The fundamental problem of compensating this system 

results from the third order polynomial in the denominator of Equation 

14. We note that this same polynomial occurs in one term of the numerator, 

and it results from excitation system rate feedback. If it were possible 

to add appropriate compensation networks such that the voltage regulator 

and speed feedback terms could be combined and the third order polynomial 

factored from the resulting expression, then this expression could be 

cancelled from both the numerator and denominator, hopefully giving a more 

advantageous pole-zero configuration. 

An attempt to accomplish the above is made by developing an appro­

priate speed feedback transfer function noting that a third order 

polynomial has four coefficients which will result in four equations and 

thus the maximum number of unknowns is four. A third order expression is 

needed, so looking at the voltage regulator term which is of order 2 let 

Rjj=As+B where A and B are to be determined. This gives the desired third 

order expression. Now set Rjg=Cs+D to have a physically realizable network, 

where C and D are also unknowns. The expressions are expanded and coef­

ficients equated as follows. 

Numerator of Equation 14: 

%Ka [KR{ZHKgs ̂+377 (K1K6-K2K5) iRDF̂ Kj+ŝ FgRg (1+TRS)K2 

+ FjjRjj(l+Tĵ s){(l+sK3T̂ )̂(2Hs2+377Kp-377K2K3K̂ }] [23] 
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The common factors from terms 1 and 2 are first factored out as 

follows. 

LNK̂ [FI)K3 [KR(AS+B) {2HK6Ŝ +377(KiK̂ -KgKg) }+s(Cs+D) (1+TRS)K2] 

+ FjjRjjd+Tj^s) { (l+sKgTj^) (2Hs2+377K^) -377K2K3K^}J 

Expand the above equation. 

( 2HKgAKĵ +Tĵ CK2) ŝ +( 2HKgKĵ B+(Tĵ DK2+CK2) ) ŝ  

+ (377 (Kĵ K̂ -K2Kg)K̂ +DK2) s+377 (K̂ K̂̂ -KgKg) K̂ B 

= KgTdoZHŝ  + 2Hŝ  + 377KiK3TdoS + 377(Ki-K2K3K4) [25] 

Equate coefficients. 

2HK6KrA + T2K2C = K3Tdo2H [26a] 

2HK6KRB + TRK2D + K2C = 2H [26b] 

377(K̂ Kg-K2Kg)K̂ A + K2D = 377K̂ KgTĵ  [26c] 

377(K̂ K̂g-K2Kg)K̂ B = 377(Kĵ -K2K3K4) [26d] 

Solve for A, B, C, and D. 

From Equation 26d B = (K2-K2K3K4) [27] 

Kr(KIK6-K2K5) 

Multiply Equation 26b by -T̂  and insert Equation 27 for B and 

add result to Equation 26a. The result is 
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2HKgKj.A - = K3T ' 2H-2HTj. + [28] 
 ̂  ̂  ̂  ̂ (K1K6-K2K5) 

Solve Equation 26c for D. 

g _ »77KiK3Td„-377(KiK6-K2K5)K̂ ) 

Kj 

Put Equation 29 into Equation 28 and solve for Â. 

377KiK3TdoTR̂ +2H(K3Tdo-TR)(KiK6-K2K5)+2HK6TR(Ki-K2K3K4) 
A = 5 [30] 

(2HKĵ g + 377 (K̂ Kg-K2Kg)K̂ T̂  ̂(K̂ Kg-K̂ K̂ ) ) 

From Equation 26a, 

(K3Tdo2H - 2HKgKgA) 
 ̂ [31] 

r̂'̂ 2 

If the linear constants resulting from Base Case 2 are substituted 

in the above equations the following values result. 

A = 2.57 

B = .426 

C = 5.15 

D = -765.5 

So for cancellation under this operating condition the speed feedback 

transfer function should have the following form. 

% 5.15s - 765.5 

% " 2.57s + .462 

= 2 (s-149) 
s + .180 
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If Tp̂ =0, corresponding to a fast regulator, then the equations for 

A, B, and D are simplified as follows. C is indeterminate and may be set 

equal to zero. Then 

ZHKgKgA = [32a] 

2HK6KRB + K2C = 2H [32b] 

377(K̂ Kg-K2Kg)K̂ A + K̂ D = 377K̂ K3T̂  ̂ [32c] 

377(KIK6-K2K5)KRB = 377(Ki-K2K3K4) [32d] 

From Equation 32d 

377(Ki-K2%) 

377(K̂ Kg-K̂ g)Kg ' •' 

From Equation 32a 

f 

g . I,;, 
K2 

3"Wd„-3"<KiKj-K2K5)Kj[̂ !̂ j 

4 

Hh 

Set C = 0. [35] 
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The values shown in Table 3 result from the above equations for 

various transmission line impedances and synchronous machine loadings. 

Table 3. Third order polynomial cancellation 

P .333 P .666 P 1.0 P .333 P .666 P 1.0 P .333 P .666 
Q .0 Q .0 0 .0 0 .206 0 .419 0 .62 0-.206 0-.419 

V-

RE=O 

V-2 

Ag-. 

A 
,4 

2.430 3.270 4.690 2.270 2.440 2.590 3.250 -11.30 
B 0.408 0.210 0.030 0.680 0.501 0.425 0.156 0.54 
D -731 -938 -531 -540 -729 -782 -1050 -3359 

Xg=. 4 
A 2.400 3.290 4.840 2.260 2.400 2.590 3.260 -9.72 
B 0.400 0.213 -0.030 0.683 0.501 0.423 0.150 0.61 
D -723 -883 -355 -539 -717 -755 -1012 -3255 

Xg=. 4 
A 2.510 3.190 4.070 2.340 2.510 2.650 3.100 -148 
B 0.430 0.235 0.161 0.7027 0.522 0.452 0.175 -2.60 
D -762 -1250 -1425 -522.8 -774 -913 -1272 -3342 

'A 3.820 4.500 5.400 3.580 3.740 3.850 5.990 
B 0.719 0.433 0.249 1.020 0.870 0.797 0.220 
D -583 -1042 -1268 -307 -473 -580 -1584 

The open-loop transfer function that results after the third order 

polynomial cancellation is 

+ Fjj(As+B)(l+T̂ s)] 

" FDLJ)(1+TAS) (KE+TES) (AS+B) (1+TRS) T" 

which may be simplified by setting Fg=L̂ =Lp=l and F̂ =Tĝ =0. Then the 

open-loop transfer function becomes 

T̂ TgACL/T̂ +s)(Kg/Tg+s)(B/A+s) [37] 
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A root-locus diagram of this system is shown in Figure 35 where 

K=K̂ . The root-locus of Figure 35 provides a workable solution. The 

poles do not move into the right half plane until is greater than 400, 

but for high the damping is rather poor. From Equation 36 it is noted 

that two possibilities remain for adding additional compensation to the 

system. L̂ /Lg and F̂ /F̂  have not been specified. Ideally the number of 

poles should exceed the number of zeros by two so that asymptotes lie at 

90® and 270*. Because of physical realizability it is not possible to 

add a zero without also adding a pole, so working with F̂ /Fp appears to 

be a better approach than trying series compensation using 

If Fjj and Fjj are made first order then the open-loop transfer func­

tion has three zeros and five poles, a desirable configuration. 

Let Fjj/Fjj = Kps/(s+l/Tp) [38] 

Arbitrarily pick 1/Tp = 20 which adds a pole at (-20, 0) to the 

open-loop transfer functions. 

Insert Equation 38 into Equation 36, setting = 1. 

K. [(s+20)K,+(K„s) (As+B) (1+TpS) ] 
OLTF =  ̂ J F I\ RGNI 

(s+20) (1+T̂ s) (Kg+Tgs) (As+B) (1+T̂ s)  ̂

Since Tĵ  is normally very small, set T̂ =0, so 

_ KA[(S+20)K3+(KFS)(AS+B); 

(s+20) (L+T ŝ) (KB+TES) (AS+B)  ̂

The numerator is second order and denominator is fourth order so 

asymptotes are at 90° and 270°. Poles are at -20, -1/T̂ , -Kg/Tg, -B/A. 
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Explore movement of zeros in numerator as a function of Kj,. The 

numerator is, neglecting 

Kps(As+B) + (s+20)Kg [41] 

which may be put in root-locus form as follows. 

Kg(s+20) 

^ KpS(As+B) [42] 

K3(s+20) 

~ KpAs(s+B/A) 

An arbitrary choice of constants 

A = 2.6 

B = .426 

K3 = .262 

results in the open-loop transfer function 

1/Kp (.262/2.6)(s+20) l/K̂  (.164)(s+20) 

s(s+.164) s(s+.164) 

The resulting root-locus is shown in Figure 36 for positive Kp 

and in Figure 37 for negative Kp. From Figure 36 pick Kp = .00362 as 

a suitable value to give appropriate complex zero locations. Putting 

this value into Equation 34 the root-locus of Figure 38 results where 

K=KA. 

The concept of cancelling the torque-angle loop poles and the field 

pole with an appropriate speed feedback transfer function produces 

[43] 

[44] 



www.manaraa.com

ZEMQ MOVEMENT FCN+KF 

K^= 0.00362 

CO 

CO 
—*o K = 0.00211 

y-
cc 

8.00 -10.00 -e.oo -I, 
R E A L  A X I S  

0.00 

Figure 36. Movement of zeros of Equation 44 with K=+l/K_ 
F 



www.manaraa.com

IM
fl

G
lN

fl
R

Y
 A

X
IS

 
tx

io
* 
i
 

q
.
O
O
 

-
2
.
0
0
 

0
.
0
0
 

2
.
0
0
 

1 
1 

I 
I 

1 
1 
1 

ZERO MOVEMENT FGN-KF 
1 
1 

• 1 

1 

1 
1 

Ô* NjE *— 

1 
1 

1 

1 

1 
1 

1 ~ 1 1 1 1 1 
10,00 -B.OO -6.00 -14.00 -2.00 0.00 

REAL AXIS cxjo» i  

VJ 
to 

Figure 37. Movement of zeros of Equation 44 with K=-l/K̂  



www.manaraa.com

%o 
—o 
rJ 

in 
<—lo 

G: 

"A' 

H-

oc 

-o 
"i ? 
o7-

o 
o 
3». 

i 

-K 

0̂  ̂

-X-

K.= 400 

I I 1 
-10.OU -8.00 -6.00 -4,00 

RERL AXIS 

W 

1 
-2,00 0.00 

CxID* ) 

Figure 38. Root-locus after third order pole cancellation and addition of 
excitation rate feedback 



www.manaraa.com

74 

desirable root-locus plots as shown in Figures 35 and 38. Successful 

implementation of this idea is difficult as will be shown later. Slight 

inaccuracies in cancellation of the torque-angle loop poles can be 

tolerated because the poles are fairly far removed from the origin and 

the resulting residues are small. Extreme accuracy is, however, 

required to cancel the generator field pole because of its proximity 

to the origin. If this pole is not cancelled it will dominate the 

system response, producing an extremely long settling time in the machine 

terminal voltage. 

H. Torque-angle Loop Pole Cancellation by Speed Feedback 

It is also possible to develop a transfer function which, when 

inserted in the speed feedback loop, will cancel the complex pair of 

torque-angle loop poles. The block diagram of Figure 18 provides an 

appropriate starting point. The takeoff point for the feedforward loop. 

Kg, has been moved to 6 in Figure 39. Parallel branches Kg and Kg are 

then combined and all feedback paths are moved to v̂  as shown in Figure 

40. If the excitation system rate feedback loop is neglected, feedback 

through K̂  is moved to the input summing junction and all feedback paths 

are arranged so they have a common denominator, the block diagram of 

Figure 41 results. The open-loop transfer function is 

•=3 ' 6̂= ̂+377 (%-%) } 

+ (Kg-KTgS) (l+y) 1 

LjjRjj(l+T̂ s) (Kg+Tgs) (1+T̂ s) (l+sK̂ T̂ )̂ (2Hŝ 377K̂ ) 
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to the torque summing junction and placing all feedback loops over a common 
denominator 
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High-speed exciters make feedback through negligible and its 

effect may be neglected (31). Tĵ  is also very small and for this 

analysis is set equal to zero. The resulting open-loop transfer function 

is then 

[Kĵ Rjj{ 2HKgs2+377 (KiKg-K2Kg) }+sK2% ] 

; Ô 146] 
LgRgd+Tĵ s) (KE+Tes) (l+sKgTdo) (2Hs4377Ki) 

Let %/Rjj = (Cs+D)/(As+B) [47] 

This choice of rate feedback transfer function numerator and 

denominator will result in a third order polynomial while the complex 

torque-angle loop poles result in a second order polynomial, thus after 

cancellation a first order zero will remain. Its location is left 

unspecified by representing it as (Es+F). 

The numerator of Equation 46 is now equated to the product of the 

above zero and the desired complex zeros. 

KR(AS+B){2HK6S2+377(KIK6-K2K5)}+SK2(CS+D) = (Es+F) (2Hŝ +377Ki) [48] 

If the expressions are expanded and coefficients are equated, the 

result is 

2HKĵ gA = 2HE [49a] 

2HKgKĵ B + K2C = F2H [49b] 

377(KIK6-K2K5)KRA+K2̂ 5 = 377KiE [49c] 

377(Kĵ Kg-K2K5)Kĵ B = F377K̂  [49d] 
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This system is solved yielding 

V 
® " (KiK6-K2K5)KR [SOb] 

- 2HFK5 
C = — — [50c] 

(K1K6-K2K5) 

377EKc 
D = —= [50d] 

*̂ 6 

If the zero location is fixed at -5 and E = 1, F = 5, the resulting 

values for these parameters for various tie line impedances and machine 

loadings are shown in Table 4. The root-locus resulting from this 

development is shown in Figure 42. 
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Table 4. Torque-angle loop cancellation using speed feedback 

P .333 P .666 P 1.0 P .333 P .666 P 1.0 P .333 P .666 
Q .0 Q .0 Q .0 Q .206 Q .419 Q .62 Q-.206 Q-.419 

% =.02 XE=j.4 
A 1.576 2.118 3.04 1.47 1.58 1.68 2.10 -7.38 
B 4.225 5.043 8.932 4.91 4.69 4.84 4.41 -3.49 
C 5.740 4.240 2.99 5.27 4.35 3.76 5.13 7.82 
D -472.9 -607.1 -344.1 -349.4 -471.8 -506.4 -679.4 -2173.6 

Re=0 Xg=j.4 
A 1.57 2.13 3.13 1.46 1.57 1.68 2.11 -6.29 
B 4.26 5.24 10.55 4.94 4.74 4.92 4.54 -2.29 
C 5.76 4.19 2.46 5.33 4.39 3.78 5.06 8.66 
D -468.1 -572.0 -230.4 -348.9 -464.2 -488.8 -655.0 -2106.6 

Rg=.2 Xg=j.4 
A 1.58 2.01 2.57 1.48 1.59 1.67 2.01 -93.6 
B 4.00 4.03 4.80 4.71 4.35 4.31 3.68 116.1 
C 5.51 4.36 3.76 4.70 3.99 3.48 5.48 7.96 
D -480.7 -788.8 -898.9 -329.7 -488.4 -575.8 -802.8 -2108.2 

XE=jl 
A 1.31 1.54 1.85 1.22 1.28 1.31 2.04 
B 4.51 4.28 4.62 4.99 4.76 4.65 4.31 
C 5.14 4.94 4.47 3.10 3.06 2.84 7.95 
D -199.2 -355.9 -433.0 -105.0 -161.7 -198.2 -541.0 
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Figure 42. Root-locus showing results of torque-angle loop cancellation 
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V. ANALOG COMPUTER RESULTS 

The ideas developed in the previous section using linear analysis 

techniques are now studied using a nonlinear analog computer model of a 

synchronous machine connected to an infinite bus (see Appendix E). The 

effects of the various compensation schemes are explored by making the 

following changes in operating conditions of the synchronous machine. 

Initially the machine is operated with set as in Base Case 2. T̂  

is increased from zero to full load (0 to 3 pu). Then T̂  is increased 

to 3.3 pu and returned to 3.0 pu. Next V  ̂is increased and decreased 
ref 

by 5% and finally, is returned to zero. 

The strip chart recorder has been operated so that the extreme right 

and left portions of the graphs indicate zero levels. Variables are given 

on the left side of the strip charts and recorder gains in volts-per-line 

are given to the right. The positive direction of all variables is 

upward. Each tick on the bottom edge of the strip chart pointing upward 

represents one second of analog computer operation. The auxiliary time 

markings pointing downward represent one second of operation of the 

synchronous machine. The analog computer was operated in the fast-second 

mode, thus one second of synchronous machine operation is simulated by 

10 seconds of analog computer operation. 

The results shown in the following figures represent a nearly opti­

mum choice of parameter values for each case subject to the constraint 

that the excitation system amplifier gain remain at 400 pu. 

Figure 43 shows the uncompensated system. A 10% increase in mechani­

cal torque results in growing oscillations and an unstable system. Thus 
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Figure 43. Uncompensated system 
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the machine is operating near its stability limit under the conditions of 

Base Case 2. The frequency of oscillation is about 21 radians/sec. 

Figure 44 shows the results of adding excitation system rate feed 

back. This control loop provides a considerable improvement in system 

performance over the uncompensated system. However, as predicted by the 

linear model, the response is dominated by a pole near the origin result­

ing in a long settling time in Av̂ . The field voltage reacts very slowly 

to changes in both torque and voltage references and this long time 

constant is reflected in both the terminal voltage Av̂  and machine angle 

6 .  

Figure 45 shows the results of adding a power system stabilizer. 

The damping of this case is considerably better than that provided by 

excitation system rate feedback. The initial overshoot in tie line power, 

APg, resulting from the 10% increase in the torque reference is almost the 

same in both cases. The response to a 5% increase in voltage reference 

results in a much smaller overshoot in the case of the power system 

stabilizer and the settling time is also greatly improved. 

Figures 46a, 46b and 46c show the effects of placing a bridged-T 

filter in the regulator loop of a synchronous machine tuned to 21, 23 

and 19.7 radians per second, respectively. 

Linear analysis of the previous section suggested a high degree of 

sensitivity to the exact frequency to which the bridged-T was tuned. 

This result is not confirmed here. The three cases, one tuned to the 

natural frequency of the machine, tone above this frequency and one below, 

are very similar. 
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Figure 44. Excitation system rate feedback with Kp=.04 pu and Tp=.05 sec 
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~i M/v/w* ŷi/vwvwvwN̂ '̂ -'̂  

2V/L 

. 2v/L 

,5v/L 

-VWv̂  Iv/L 

Au t" Iv/L 

h w— JW 

h 

Iv/L 
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r=.l and n=2 



www.manaraa.com

88 

ref 

m 

"FD 

2v/L 

2v/L 

2v/L 

AP, 

AVt 

|||f  ̂
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If the filter is tuned to a higher frequency and If the attenuation 

at the notch frequency is decreased as shown in Figure 46d, the result is 

a more oscillatory response to a change in torque and a less oscillatory 

response to a change in reference voltage. 

Figure 47 shows the results of placing a bridged-T filter in the 

regulator feedback loop, a two-stage lead-lag network in the exciter 

feedforward loop and feeding an auxiliary signal proportional to rotor 

speed deviation into the excitation system comparator. 

Comparison of Figures 45 and 47 shows that the tie line power 

resulting from a change in torque reference in the latter has less over­

shoot and is better damped than in the former. However, the reverse is 

true for a change in voltage reference. The settling time and damping 

of the terminal voltage exhibited by both are quite satisfactory. 

Figure 48 shows the results of placing a transfer function in the 

speed deviation feedback path designed to cancel the torque-angle loop 

poles and the field pole. The initial overshoot is somewhat smaller than 

the previous cases and the oscillation is quickly damped out. Note that 

the polarity of the auxiliary signal for this network is opposite to those 

previously considered. That is, an increase in Aw results in a decrease 

in field voltage, thus Ô is allowed to make large excursions. (Note the 

scale change on 6 in Figures 48 and 49.) The settling time for this 

network is very long, indicating that the pole near the origin has not 

been effectively cancelled. 

If excitation rate feedback is added to the above configuration as 

suggested by the root-locus diagram of Figure 38, Figure 49 results. 



www.manaraa.com

91 

V. ref 2v/L 

••m 2v/L 

"FD 
2v/L 

AP. 

Av* 
-f—Ir 

. 2v/L 

.5V/L 

Au) f 

Iv/L 

1V/L 

1̂ -
"VAWVW- JImw 

1  ̂
Iv/L 
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An unstable condition resulted when the was switched from zero to 

3 pu with the above compensation network inserted. Therefore, the machine 

was started and full load placed upon it with the compensation network 

removed. The network was then switched in and a set of changes in refer­

ence levels identical to those described previously was performed, 

starting with a 10% increase in mechanical torque. The results are 

comparable to those produced by excitation system rate feedback. 

Figure 50 shows the results of placing a transfer function in the 

speed feedback loop designed to cancel the torque-angle loop poles only. 

A 10% increase in torque reference results in an overshoot which is less 

than that observed for either the power system stabilizer or the combina­

tion of bridged-T filter̂ lead-lag network and speed feedback. The over­

shoot resulting from a 5% increase in is slightly greater than that 

observed for either of the above systems. As in Figure 48, which shows 

an attempt to cancel three of the machine poles, the polarity of the speed 

feedback causes a decrease in Epg for an increase in Aw leading to 

excessive excursions in 6. 

The following figures show the operation of the synchronous machine 

against a bus whose voltage is being modulated to produce a sinusoidal 

variation between 1.02 and 0.98 pu peak value at an adjustable frequency. 

For the studies involving a modulated bus voltage the generator is 

operated under conditions of Base Case 1. 

Figures 51 and 52 show the performance of the machine with the 

bridged-T network in the regulator loop, a two-stage lead-lag network in 

the exciter forward loop and speed feedback through a pure gain. Figures 

53 and 54 show the performance of a power system stabilizer. 
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Figure 53. Synchronous machine operating against an infinite bus whose 
voltage Is being modulated at the natural frequency of the 
machine with power system stabilizer compensation 
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The optimized parameters used for the compensation networks in the 

first two figures are 

= 0.2 sec r = 0.931 

T2 = 0.05 sec n = 2.49 

GBN = 0.3709 pu = 23.3 rad/sec 

and the parameters for the power system stabilizer are 

T = 3 sec Tg = 0.05 sec 

= 0.2 sec GEN = .7714 pu 

In Figure 51 the bus voltage was modulated at a frequency equal to 

the natural frequency of the machine, = 21 rad/sec. To show how 

machine performance was affected by a change in operating conditions and 

the compensation network parameters, the torque reference was changed 

from zero to 3 pu at point A. The torque reference was then increased 

and decreased by 10% of full load at points B and C, respectively. This 

part of Figure 51 is equivalent to the first part of Figure 47, with the 

exception of the changes in operating conditions and parameters as 

previously noted. At point D modulation of the bus voltage was begun. 

The bridged-T network was removed at point E and replaced at F. Similarly 

the lead-lag network was removed at G and replaced at H and the speed 

feedback was removed at I and replaced at J. All three compensation 

networks were removed at K and replaced at L. Finally the modulation of 

the bus voltage was removed at M. 

Removal of the bridged-T network at E increased the excursions of 

the field voltage and approximately doubled the oscillations of tie line 

power as shown by Removal of the lead-lag network at G resulted in 

large excursions of tie line power and terminal voltage and also allowed 
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large oscillations to develop in incremental speed Aw and machine angle 6. 

Removal of all compensation at K produced an even more severe condition, 

but when the compensation networks were replaced, the oscillations were 

damped out. 

Figure 52 is similar to Figure 51 except that the bus voltage 

frequency was reduced to 2.1 rad/sec. Removal of the bridged-T at E 

resulted in large and high frequency field voltage excursions. Removal 

of the lead-lag network at G produced results similar to those of the 

previous figure. Removal of speed feedback when the system was being 

perturbed at such a low frequency had little effect. Removal of all 

compensation at K again resulted in large oscillations in the various 

machine quantities which were damped out after reinsertion of the com­

pensating networks. 

Figure 53 is similar to Figure 51 except that a power system stabi­

lizer was used for compensation. The torque reference was changed from 

zero to 3 pu at A and was increased and decreased by 10% at B and C, 

respectively. (Compare with Figure 45.) The bus voltage modulation was 

added at D and removed at E. It was again added at F and the power system 

stabilizer was removed at G and replaced at H. The bus voltage modulation 

was removed at I and the torque reference was decreased to zero at J. 

Removal of the power system stabilizer allowed the oscillations to 

grow to comparatively large values, and after it was replaced, the 

oscillations were again reduced to values comparable to those before the 

network was removed. 

Comparison of Figures 51 and 53 shows that the power system stabilizer 

was not as effective in controlling either tie line power oscillations or 
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the terminal voltage fluctuations as the compensation networks of Figure 

51. 

Figure 54 shows the results of modulating the bus voltage at 2.1 

rad/sec. The modulation was added at A. The power system stabilizer was 

removed at B and replaced at C, and the modulation of the bus voltage was 

removed at D. 

After removal of the power system stabilizer several seconds were 

required for the oscillations to build up to appreciable levels. After 

reinsertion of the power system stabilizer the oscillations were quickly 

damped out. 

The performance of five of the compensation networks is summarized 

in Table 5 for various machine loadings. The compensation network 

parameters were adjusted to produce the best response to a 10% increase 

in torque reference with the machine operating under conditions of Base 

Case 2. The settings used here are the same as those used for Figures 

44, 45, 46a and 47, and were not changed as machine loading was varied. 

The definitions of risetlme, settling time and percent overshoot are those 

given in reference (104). Omissions in the table are the result of an 

unstable operating condition. The rows labeled AP̂  give the rlsetimes, 

settling time and percent overshoot of the variable APg resulting from a 

10% increase in the torque reference. The rows labeled Avj. give similar 

data for the quantity Av̂  resulting from a 5% Increase in 

Comparing the bridged-T, lead-lag and speed compensation performance 

to the power system stabilizer, the following generalizations may be made. 

There are no significant differences in the rlsetimes of AP̂  and Av̂  for 

the two types of compensation. The settling time for APg is generally 
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Table 5. Performance of various compensation networks 

= 3.0, pf = .85 lagging 

Tm = 2.0, pf = .85 lagging 

fv! 

= 1.0, pf = .85 lagging 
APe 
AV. 

Uncompensated Excitation 
system rate feedback 

rise-
time 

set-
- tling 

time 

% 
over­
shoot 

rise-
time 

set­
tling 
time 

% 
over­
shoot 

0.06 
0.20 

0.22 
0.60 

86.6 
10.0 

0.06 
0.98 

0.22 
4.20 

80.0 
60.0 

0.05 
0.19 

0.26 
0.35 

80.0 
6.0 

0.05 
1.00 

0.25 
4.10 

80.0 
53.2 

0.05 
0.15 

0.25 
0.325 

70.0 
7.9 

0.05 
1.00 

0.23 
3.60 

70.0 
43.5 

T = 3.0, pf = 1.0 
0.09 0.29 87.0 
0.90 4.10 69.0 

Tm = 2.0, pf = 1.0 
unstable 
0.21 0.34 6.25 

0.055 0.27 87.0 
1.00 4.20 68.7 

Tjj, = 1.0, pf = 1.0 

f '  Avf 
0.06 0.24 67.0 
0.155 0.30 6.25 

0.055 0.265 73.0 
1.00 3.80 57.0 

Tju = 1.0, pf = .85 leading 
APg 0.06 0.27 73.2 
AVj. 0.185 0.45 0.0 

0.065 
1.20 

0.28  86 .6  
4.40 62.5 
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Bridged-T only 
£0r»=21 r=.l n=2 

Bridged-T 2-stage 
lead-lag and speed 

Power system 
stabilizer 

rise-
time 

set­
tling 
time 

% 
over­
shoot 

rise-
time 

set­
tling 
time 

% 
over­
shoot 

rise-
time 

set­
tling 
time 

% 
over­
shoot 

0.05 
0.21 

0.23 
0.56 

100.0 
33.0 

0.04 
0.28 

0.21 
0.37 

73.4 
5.0 

0.05 
0.23 

0.21 
0.42 

82.6 
5-10 

0.06 
0.18 

0.25 
0.46 

82.0 
40.0 

0.04 
0.21 

0.23 
0.33 

66.0 
6.0 

0.05 
0.20 

0.21 
0.38 

66.0 
10.0 

0.06 
0.155 

0.245 
0.445 

67.0 
50.0 

0.05 
0.17 

0.26 
0.25 

60.0 
0.0 

0.045 
0.16 

0.235 
0.325 

66.0 
6.0 

0.04 
0.21 

0.22 
0.33 

97.0 
3.7 

0.05 
0.20 

0.255 
0.46 

100.0 
20.0 

0.05 
0.20 

0.27 
0.50 

87.0 
38.0 

0.04 
0.23 

0.23 
0.29 

67.0 
0.0 

0.045 
0.20 

0.225 
0.47 

76.0 
10.5 

0.06 
0.145 

0.27 
0.43 

67.0 
57.0 

0.05 
0.135 

0.285 
0.26 

53.4 
14.3 

0.05 
0.15 

0.235 
0.46 

60.0 
2.8 

0.06 
0.18 

0.28 
0.47 

80.0 
35.6 

0.05 
0.225 

0.255 
0.98 

53.4 
0.0 

0.045 
0.25 

0.19 
0.47 

63.0 
7.9 
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smaller for the power system stabilizer. The settling time for Av^ is 

longer for the power system stabilizer and the percent overshoot is also 

greater. 

Comparing the bridged-T to the above two compensation systems, the 

risetime of Av^ is generally smaller than the risetimes resulting from 

either of the above. The settling time and percent overshoot of Av^ are 

both generally greater. The risetime of AP^ is comparable to the above, 

but in most cases the settling time is longer and the percent overshoot 

greater than those above. 

Excitation rate feedback produces long risetimes, long settling 

times, and large overshoots for Avj-. Considering APg, however, the 

risetimes are comparable to those of the power system stabilizer and the 

settling time and percent overshoot are slightly greater. 

It should be noted from Table 5 that the effectiveness of damping 

through excitation control is related to the power output of the machine. 

As the load is reduced, the settling time for AF^ generally increases. 
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VI. CONCLUSIONS 

The results of this study have shown that for the particular system 

investigated, that is, a synchronous machine with high-speed excitation 

connected to an infinite bus through a transmission line, a compensation 

system consisting of a bridged-T filter in the voltage regulator loop, a 

lead-lag network in the exciter forward loop and speed feedback without 

phase compensation, performance is obtained which is superior to that of 

the power system stabilizer. 

For tests in which the infinite bus voltage was modulated at the 

natural frequency of the synchronous machine, the above compensation 

system reduced the oscillations of the electrical power output by a factor 

of four and reduced the oscillations of the field voltage to approximately 

one-half those resulting from use of the power system stabilizer. 

Excitation system rate feedback compensation results in long 

settling times, especially in Av^, and greatly increases the risetime of 

the field voltage, thus decreasing the ability of the excitation system 

to produce synchronizing torques. 

Attempts to cancel the synchronous generator field pole located near 

the origin result in extremely long settling times of Av^ if the cancel­

lation is not exact. 

Cancellation of the torque-angle poles using speed feedback is more 

successful because larger errors can be tolerated in the placement of the 

bridged-T zeros. The above two compensation techniques result in a 

decrease in field voltage with an increase in rotor speed allowing the 

machine rotor angle to make abnormally large excursions due to changes 

in loading. 
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IX. APPENDIX A. DEVELOPMENT OF ANALOG COMPUTER 
REPRESENTATION OF A SYNCHRONOUS MACHINE 

For the purposes of this study it is assumed that a synchronous 

machine may be adequately represented by six magnetically coupled windings: 

three stator windings, one field winding, and two amortisseur or damper 

windings. Magnetic coupling between these windings, and thus the flux 

linking each winding, is a function of rotor position. The instantaneous 

terminal voltage of any winding is of the form 

V = ±Zri ±2X [A-1] 

where X is the flux linkage, r is the winding resistance, and i is the 

current, with positive current flowing out of the generator terminals. 

Figure 55 is a pictorial representation of a synchronous machine. 

Two sets of reference axes are shown on the figure. Park (91, 92) and 

others (7, 76) have shown that transformation of quantities from the abc 

reference frame to the odq reference frame considerably simplifies the 

matrix equations by eliminating time varying quantities from them. As a 

result of this simplification, however, two quantities called the speed 

voltage terms are added to the resistance matrix of the machine. 

As shown in Figure 55, the d-axis lies along the centerline of the 

rotor North pole and leads the axis of phase a by 9 degrees. The q-axis 

lags the d-axis by 90 electrical degrees. Also note that for the current 

directions shown, +ij, and +i^ magnetize the +d-axis and H-iq magnetizes 

the +q-axis. 
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d-axjs 
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'c O 
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90*4 0 

Figure 55. Pictorial representation of a synchronous machine 
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0-0X18 is perpendicular to 
the plane of the page 

120® 240® 

Figure 56. Unit vectors a, b, c and o, q which form reference 
frames for synchronous machine 
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An appropriate Park-type transformation, which conforms with proposed 

IEEE standards (57), for the reference system shown in Figure 56 is 

P = /â/â 

yî/2 

cos 6 

sin 0 

Jïn 

cos(0-120) 

sin(0-12O) 

JTii 

cos(0+120) 

sin(0+120) 

[A-2] 

where F , = PF . . P exists and 
—odq —abc — 

p-^ = J~m J 1/2 

\/ 1/2 

COS 0 

cos(0-120) 

COS(0+120) 

sin 0 

sin(0-12O) 

sin (0+120) 

[A-3] 

Thus F , = P~^F , . 
—abc — —odq 

Note that P^~^ = 2^ so that the transformation is orthogonal. 

Consider transforming the unit vectors a, b, c in the abc coordinate 

system of Figure 56 into the odq reference system. 

o 

d 

m
 

—
, 

II 

_ q _  

J 1/2 

cos 0 

sin 0 

JÏÏ2 

cos(0-120) 

sin(0-120) 

y 1/2 

cos(0+120) 

sin(0+120) 

a 

b 

c 

The zero vector expressed in terms of a, b and c is 

o = JïniJïn 1 + J~ï/2 b + yi/2 7] 
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and its magnitude is computed as follows, 

|o| = JTn y 1/2 + 1/2 + 1/2 

= 1 

So o = o, a unit vector. 

Similarly 

d = y2/3[a COS0 + b cos(0-120) + c cos(0+120)J 

|d| = J2/3 sfcos^ + cos^(e-120) + cos^(0+12O) 

= fïn STFi = 1 

So d = d 

and a similar procedure yields 

q = q. 

Thus the transformation of Equation A-2 defines the relationship between 

two sets of orthonormal basis vectors. 

In Figure 56 unit vectors d and q lie in the plane of the page, and 

o forms right angles with both d and q and points out from the page. Unit 

vectors a, b and c are all inclined to the plane formed by the d and q 

axes by an angle whose cosine equals y 2/3. The projections of vectors a, 

b and c onto the dq-plane lie at 120° with respect to each other. The 

fixed reference is a stationary line located in the dq-plane, and Wgt is 

the angle measured from this fixed reference axis to the projection of a 

in the dq-plane. Thus the projections of a, b and c in the dq-plane 

rotate at synchronous speed in a clockwise direction. As the rotor angle, 
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6, changes, the d- and q-axes pivot about the ô'-axls so that the angle 

between the fixed reference axis and the q-axis is also equal to 6. 

A quantity lying along the a-axis having a magnitude equal to 1 has 

its length reduced to yj/yTwhen it is projected into the dq-plane. 

Define 0 = Ugt + Ô + 90° electrical radians [A-4] 

Figure 57 shows the d- and q-axes after some time interval, t, 

assuming that the d- and a-axes were coincident at time t = 0. If the 

rotor had rotated at synchronous speed throughout the interval, the 

d-axis would lie at the angle labeled Ugt in Figure 57. However, since 

a generator is being considered, assume that the rotor has traveled at 

some speed greater than cOg for part of the interval and thus the d-axis 

is in the position shown. Solving Equation A-4 for ô, 

6 = 8 -  W g t  -  9 0 °  e l e c t r i c a l  r a d i a n s  [ A - 5 ]  

For the case of a generator operating against an infinite bus, the 

fixed reference axis becomes the angle of the infinite bus voltage. 

Thus 6 is the angle between the infinite bus voltage and the q-axis of 

the machine. The generator field current produces flux in the +d-axis 

direction and, since the generated voltage lags the flux by 90 

electrical degrees, the generator terminal voltage lies primarily along 

the q-axis. 5 is the angle between the infinite bus voltage and the 

induced voltage of the machine and for normal generator operation 6 

is positive. 

In order to draw a circuit diagram for the synchronous machine it 
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a 

90® 

reference axis 

Figure 57. Reference axis 

-90® -30® 30® 90® 150® 210® 

Ju neutrol 

Figure 58. Connection of stator coils to neutral and generator output 
terminals 
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is necessary to know how the windings of Figure 55 are connected to the 

generator neutral and terminals. This information is given in Figure 58. 

Â. Development of Synchronous Machine Equations 

The flux linkage equation for the six circuits of the synchronous 

machine is 

^a Laa Lab ^ac ^AF LaD g
 i 

^a 

h Lba ^bb Lbc 4)F LbD LbQ ib 

Xc Lea ^cb ^cc LCF LCD LCQ ^c 

AP Lpa Lpb Lpc LPP LFD LFQ IF 

D̂a ^Db LDC LDF LDD LDQ 

LQF LQD LQQ. • ̂ Q. 

weber-turns [A-6] 

where 

r self-inductance when j = k 

[_ mutual inductance when j ̂  k 

All the inductances in Equation A-6 are functions of rotor position 

angle, 0, with the exception of Lpp, Lgg and LQQ; therefore, in a voltage 

equation X = li + iL must be used. The inductances in Equation A-6 may 

be written as follows. 

1. Stator self-inductances 

Laa = Lg + 4a 20 

Lbb = Lg + \ cos 2(0-120) 

^cc = Lg + 1% cos 2(0+120) 

henrys Lg>L^ [A-7] 
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2. Rotor self-Inductances 

All rotor self-inductances are constants since slot effects and 

saturation are being neglected. Let 

^FF 

LDD = Lg henrys [A-8] 

^QQ 

3. Stator mutual inductances 

The phase-to-phase mutual inductances of the stator are negative 

functions of 6 and are written as follows. 

Lab = Lba = -[Mg + cos 2(0+30)] 

Lbc ̂  ̂cb = "1^3 + cos 2(0-90)] henrys Mg>I^ [A-9] 

Lea = Lac = -[Ms + cos 2(0+150)] 

4. Rotor mutual inductances 

The coupling between the d and q axes is zero since there is a 90° 

displacement between the two, and the mutual inductance between the field 

and direct axis damper winding is a constant, thus 

^FD ̂  SF ̂  ̂  

Lpq = Lqp = 0 henrys [A-10] 

Ldq = Lqjj = 0 

5. Stator-to-fleld mutual inductances 

The mutual inductances from stator windings to field windings are 

LaF ~ Lpa = + Mp cos 0 

LbF — Lpjj = + Mp cos (0—120) henrys [A-11] 

LQF ~ Lpg — + Mp cos(0+120) 
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6. Stator-to-d-axis damper winding mutual inductances 

The mutual inductances from stator windings to the direct axis 

damper winding D are 

LaD = = + Mg cos 6 

LbD = Lj)jj = + Mj) cos(0-120) henrys [A-12] 

Lj,jj = Lgg = + Mjj cos ( 6+120) 

7. Stator-to-q-axis damper winding mutual inductances 

The mutual inductances from stator windings to the quadrature axis 

damper winding Q are 

Lap = Lqa = + Mq sin 0 

Lyq = Lqb = + Mq sin(8-120) henrys [A-13] 

Lgq = Lqg = + Mq sin(0+120) 

The flux linkage equation is now transformed from the abc reference 

frame to the odq reference frame by premultiplying Equation A-6 by 

'P 0 ' 

.0 % 

where P is the Park-type transformation defined in Equation A-2 and Ug 

is the 3x3 unit matrix. 

P  J O "  P 0 • " p-1 0 " 'p 0 • 
X = L 

.0 % •0 U3- . i % .0 U3, 

The result is 
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'V \ 0 0 1 ° 0 0 "io" 

^d 0 ^d 0 j +j3/aip 0 id 

0 0 \ 1 0 0 
_s_ weber-

0 +/%F 0 1 ^ & 0 ip turns 

0 +/^ 0 1 0 [A-15] 

An- .0 0 +/i72Mo 
1 

1 0 0 Ln. • ^0-

where 

Id = + »s + 3/2 

Lq = 1; + «s - 3/2 henrys [A-16] 

Inspection of Equation A-15 shows that the inductances are no longer 

time varying. The flux linkage equation. Equation A-15, may be partitioned 

as follows 

&)dq 

1 1 

^dq 

-m 

ha 

u 

^dq 

--R -

weber-turns [A-17] 

where 

^dq 
0 

0 

4  

0 

L = 

0 

L. c 

0 

Mr 

"D 

0 

0 

q-i 

0 

+V3/^p 0 

0 0 t/ï/âiQ 

henrys 

henrys 

henrys 
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The self-inductances of Equation A-15 may be split into mutual and 

leakage inductance terms where £ is a leakage inductance. 

1 

O
 

1 1 o
 

o
 

o
 

o
 

o
 o
 

+
 0 

1 o
 

1 
o
 

r*̂ 

^d 0 (Iy-&d)+&d 0 +/372Mp +/372Mg 0 ^d 

0 0 (Lq-&q)+&q 0 0 

^F 0 +̂ Mp 0 (LF-Ap)+2p 0 ip 

0 t/sT̂ g 0 Mr (LD-AD)+̂ D ° 

- Q̂- L 0 0 +/3/2MQ 0 0 (LQ-JIQ)+£Q iq. 

weber-
turns 

[A-18] 

The circuit diagram of the machine is shown in Figure 59, and from 

it the following voltage equation for the machine may be written. 

1 

^b 

^c II 1 

-Vp 

0 

1 
o
 1 

0 

0 

0 

0 

0 

0 

^b 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

a 

Âb 

^c 
+ 

Xp 

—1 o
|
 volts 

[A-19] 

where 

" 1 1 1" cfl 
•H 1 

 ̂= -'n 1 1 1  ib -Ln 

_1 1 1. - ̂ c-

1 

1 

1 

1 

1 

1 

i a 

ib 

-ic-

volts [A-20] 

- -4. iabc -in iabc 

If r^ = r^ = = r then 

4bc = ̂ 3̂ ohms [A-21] 
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Equation A-19 is now written in partitioned form as follows 

^bc 

% 

^bc 'i ̂  ' 
-abc 

" X 
abc + 

-R - k J -0 _ 
volts [A-22] 

Equation A-22 is transformed by premultiplying by 
P 0 

Lo 

P 0 

0 u. 

^bc 

- -3" '"-R 

P 0 

0 U3. 

P 0 

Lo U3J 

•̂ bc 

-

R , 0 
-abc — 

0 RaJ 

H
 

|o
 • 1 Ol 1 

'4bc 

.0 U3J Lo U3J Lir -I 

0 V -11 

%- -0-
volts [A-23] 

Each term of Equation A-23 is now evaluated separately. 

Voltage term; 

P 0 

0 U3. 

Vo 
^d 

^bc = 
-Vp 

-

0 
- 0 ̂ 

volts [A-24] 

Resistance term: 

P 0 

LO % 

^bc -

0 %. 

rp-1 

% 

PR , P~^ 0 
—abcr- — 

R . 
—abc 

0 
ohms [A-25] 

Current term: 

"P 0. " "i 
—abc 

.0 U3. -

V 

amps [A-26] 
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Flux linkage terms; 

"p 0" 
•^bc ^bc 

0 U3, 1 1 

-

volts lA-27] 

is computed as follows. By definition, 

•^dq ~ 

Differentiating, 

La = PÂ ^ + PX ̂  
-odq —abc —abc 

So 

^bc - iodq " ̂ bc ~ ̂ dq - ̂  %dq 

[A-28] 

[A-29] 

Differentiating the top partition of Equation A-15, the following matrix 

equation results where the right side is a 3x1 vector. 

1 

0
 

^d 

II 

X-

^oio 

Laid t/sT^D^D 

Lqiq t, 

volts [A-30] 

Also using Equation A-2 and Equation A-3 

"0 0 0' 

P P  ̂  =  t o  0  0 - 1  

.0 1 OJ 

and finally from Equation A-15 and Equation A-31 

0 

L -hoL̂ ij -w/âTâipiF -«.yâTaininJ 

volts 

[A-31] 

[A-323 
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Differentiating the bottom partition of Equation A-15 yields 

VâTaïuid 

L+YVÂ̂ iq 

Neutral voltage term; 

P 0 

+VF 

lO U3i 0 
k 

v" 
d̂q volts 

volts [A-33] 

[A-34] 

n 
V , 
—odq Pv̂  - -EÊ L-'Piaie - UaS-'H ibc 

-ZBnf'ïod, -

-PR.P~̂  = -3r 
n 

1 0 

0 0 

LO 0 

0 

0 

0 J 

ohms 

[A-35] 

[A-36] 

So 

= -3V„ [A-37] 

and similarly 

= -3V„ 

Finally, 

rvH 
"odq 

f̂n̂ o 
0 

3Lnio 
0 

0 - 0 
0 0 
0 0 

- 0 - - 0 -

[A-38] 

Inserting the above results into Equation A-23 and expanding to 

6x6 notation the following machine voltage equation results. 
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V -rfSr̂  0 0 0 0 0 'io* 

d̂ 0 r -HoLq 0 0 id 

0 -coLd r w/372Mp -03/37̂ 13 0 

-̂ F 0 0 0 rp 0 0 

0 0 0 0 0 0 

0 . _0 0 0 0 0 -iQ. 

• 0 0 0 0 0 "io" 

0 Ld 0 +/372Mp V̂ D 0 

0 0 \ 0 0 t/%q q̂ 

0 •t/âTâfj. 0 4 % 0 4 

0 0 0 ÎD 

. 0 0 +ŷ  0 0 
- -V 

volts 

[A-39] 

Using Equation A-15 and Equation A-39 the machine voltage equations 

may also be written as follows where p = d/dt and p̂  = d/dt̂ . 

-Vj 

0 

0 

r+3rĵ +3LnP 0 

0 

0 

0 

0 

0 

P 

0 

0 

0 

0 

0 

r 

0 

0 

0 

0 

0 

p 

-0) 

0 

0 

0 

0 

0 

r 

0 

0 

0 

0 

w 

P 

0 

0 

0 

0 

0 

0 

'I 

0 

0 

0 

0 

0 

p 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

p 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

p. 

'io 

id 

q̂ 

ip 

ig 

y - iq. 

- V 

d̂ 

q̂ 

1 

volts [A-40] 
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B. Interpretations of Voltage Equations 

1. The zero-sequence equation Is uncoupled from the other equations 

and thus It may be solved separately once the Initial conditions 

are known. 

2. The voltage equations are like those of a passive network except 

for speed voltage terms In the resistance matrix which result 

from the elimination of time-varying Inductance coefficients. The 

resistance matrix Is nonlinear as a result of the presence of 

products Involving u. 

3. All of the mutuals are reciprocal, as in a passive network. This 

results from the particular Park-type transformation used here and 

Is not true In general. 

C. Per-unit Conversion 

The large numerical difference between the stator voltages in the 

kllovolt range and the much lower field voltage makes it desirable to 

normalize all equations to a convenient base value and express all 

variables in per unit or percent of base value. In order that the same 

equations are valid both in dimensional form and in per unit, Lewis (76) 

makes the following suggestions concerning the choice of base quantities. 

1. If the circuits are coupled, the same volt-amp 
base and same time base should be chosen for each 
circuit. 

2. Base mutual stator-to-rotor Inductance should be 
the geometric mean of the base self-inductances of 
stator and rotor. 
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3. For coupled windings having no relative motion 
the base mutual Inductance should also be chosen 
as the geometric mean of the base self-impedances. 

The stator base quantities are defined as follows where subscript 

"B" denotes a base quantity and "u" denotes a per-unit quantity. 

1. Stator bases (valid for all odq-axls quantities) 

Sg = stator rated volt-amps per phase 

Vg = stator rated line-to-neutral voltage, rms 

Wg = rated synchronous speed of machine 

Ig = Sg/Vg = stator rated line current, rms amps 

tg = 1/Wg seconds 

Xg = Vgtg = Vg/ojg = Lgig web er-turns 

Rg = Vg/Ig ohms 

° "̂ B̂ b/̂ B ' Vg/wslB " ̂B/̂ B henrys 

2. Normalized time 

Wû u = wt 

(w/Ug) (t/tg) » OJt 

Choose tg = 1/wg sec 

Then tut = tot 

When differentiating, ty = t/tg = cogt 

• 'B IP -  ̂

3. Rotor bases 

Let Ipg be that field current (all other 1=0) which generates Vg rms 

or on the air gap line when w = Wg. Define Î g and Iqg similarly. 
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L̂ C 

Find Vq when stator-generated voltage equals Vg. 

yivB sin 8 

yivg sin(e-120) 

. yiVg sin(0+12O). 

Using Equation A-2, 

v„ - JÏÏÏJÏV-̂  laln̂ e + sln̂ (9-120) + sln̂ (e+120)l 

- yâ VB 

From Equation A-39, 

\ = "Vd - riq + "/sTzMplp + -JÏÏhŝ ±̂  

Setting 

id = iD = Iq = iq = 

Vq - UB̂ sTiMpip = yr Vg 

Thus the rms equivalent of î  reflected in the stator is (using 

capital I for rms) 

I FB 

A similar procedure yields the following 

D̂B v/̂ Vg/(ugMjj) = ŷ g/(wgMglg) 

IpB • y2V;/((.gMq) - /zSg/Cwgl̂ Ig) 

4. Field bases 

F̂B y27B/(i«BMp) 

VpB ° Sa/ipB " "B%'B' 

®FB " Tps/IpB -

F̂B ° 

F̂B = 'rB/"B - VB</2 
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5. D bases 

(For Q bases replace D by Q in following equations.) 

D̂B ~ ŷ B̂ '̂ B̂ D 

D̂B  ̂ '"B̂ B̂̂ /̂  

B̂ ~ 

D̂B  ̂ D̂B'̂ '̂ B̂ DB 

D̂B ~ D̂B̂ "B ~ 

6. Base mutuals; stator-to-rotor 

7. Base mutuals; rotor-to-rotor 

_ B̂̂ Î D'̂ B  ̂ _ ̂ FB̂ B 

= Mp/yz 

Similarly, 

B̂ 

V ° 

So 

V̂ FB = = '^Fu 

MD/Mdb = /̂  = 

and Mp̂  = M, 
Qu 
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8. Normalize the flux linkage Equation A-15 

For the zero sequence equation we write 

ôû B ° ô̂ oû B 

I 
'ou "o'oû  

= L_i_.-2. 

L_i 

B 

o ou Vg 

ôu ™ ôû ou* 

X. X. 

The d-axis equation may be written as 

du B d du B V ' r Fu FB v D Du DB 

d̂u -

j—— B̂ "'B /TT: v/̂ VB 
d̂u " d̂û du +y3/2Mp.ip̂  (̂ Mp +\/̂ Mpl̂  

d̂u - Wdu+v/i7̂ uiĵ +757"2MB„lB,. 

Similarly the q-axis equation becomes 

qû B Lqiqû B '̂ 'V̂ ^̂ Qû QB 

or 

V ° 

The field equation is similarly computed to be 

F̂û FB " + \/̂ %̂ dû B F̂̂ Fû FB '̂ D̂û DB 



www.manaraa.com

140 

or 

"̂ Fu •*" Sû Fu \û Du' 

In a similar fashion we compute 

"Du 

Q̂u 

= YSTT 
Du 

= + 
Mqolqu + L̂ uiqu-

From the above equations the following normalized flux linkage equa­

tion results which has the same form as the dimensional equation, A-15. 

0̂ I'O 0 0 0 0 0 'IO 

D̂ 0 LD 0 T/̂ F +JïJm D 0 ID 

0 0 0 0 +Y37̂  'Q 

AP 0 T/ÏTZMP 0 
4 

0 
F̂ 

D̂ 0 +7̂ Mj3 0 LD 0 D̂ 

- V 
_ 0 0 T/STZMQ 0 0 LQ- -̂ Q 

per unit 

[A-41] 

9. Normalize voltage Equation A-39 

The zero sequence equation may be written as 

•̂ oû B " " (r+3r̂ ) î Î% - (1̂ +31̂ )̂103 iĝ I ou B 
u 

i 
dtu ôu (̂ û ^̂ nu)̂ ou ~ (̂ ou'̂ ^̂ u) 

The d-axis voltage is similarly computed as follows. 

VjuVg = -ridû B - wLqiquIg - MgiqulQB 

-LdUB 2̂  idû B - F̂̂ B -3%- ̂ Fû FB " sP  ̂ D̂'̂ B D̂û  
u dt u 

"•DB 
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Mu -Vdu - "uVqu - "j^ VQU 
VB Vg 

-Ld ̂  ̂du i/âTT Mp Mm _d_ ipu -ŷ  MD Mm 
VB dt„ VB dt̂   ̂ VB dt„ 

"Zŷ du ~ ̂ û qû qu "̂ u Mqiqy ̂  ̂5̂  

-au ± iau -757i M, V̂ M. 

du " """û du ~ "û qû qu ~ '̂ u Q̂û Qu 

-̂ du ]#- Idu -.yî/2 «Fu ar- "DU 

The q-axis voltage is computed as follows. 

qû B ~ "û B̂ d̂ dû B ~ ̂ q̂û B F̂̂ Fû FB 

"'̂ Û B MoiDulDB-LqWg iqû B ~ '̂ '̂ B "7̂  ̂Qû QB 
dtu "  ̂ dt̂  

or 

qu " "û dû du " ̂qu'u '*' "û Fu "FU 

•houinu Jm -JJn 5̂  i, 

The field voltage equation becomes 

F̂û FB " "'F̂ FÛ FB - Mpwg ̂  idû B 
u 

"̂ F"B ̂  ̂Fû FB " %"B ̂  ̂Dû DB 
u u 
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or 

-Vpu = -̂ Fû Fu F̂u d̂u - tfu dt̂  ipu " ̂R" d̂  ̂Du" 

Similarly the damper winding voltages are 

0 = Vj)uVj)B = -rpiĵ ylpB - Jï/l MgWg d̂û B 

2̂  ̂Fû FB " ̂D"B dt̂  ̂Dû DB 

= -IDÛ Du " 73/2 Mjju idu ~ "B%U F̂u ~ ̂ Du 3̂  ̂Du 
u 

and 

0 - "qu'qb " -'q̂ qu V ' ̂ VB Vs - VB dt 

0 = -fQû Qu " q̂u " Q̂u* 

The resulting machine equation in per unit is 

" ̂ 0' 'u'*"̂ n̂ 0 0 0 0 0 0̂ 

0 r +a)Lq 0 0 +w/372M̂  d̂ 

0 -wLd r -(oy372Mp -toysTlMp 0 q 

-Vp 0 0 0 "̂ F 0 0 F̂ 

0 0 0 0 0 'D 0 

- 0- •0 0 0 0 0 'Q- LIQJ 

(continued on next page) 
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LO+3L„ 

0 

0 

0 

0 

0 

+y372Mp 

t/âTzMg 

0 

0 

\ 

0 

0 

Vwâ̂ , 

0 0 0 

+/372MF 4/372Mg 0 

0 0 +/372MQ 

Mt, 

0 

0 

Ln J 

-io" 

d̂ 

q 

-in-

per 
unit 

[A-42] 

Comparison with Equation A-39 shows that the above per-unit equation 

has the same form as the dimensional one. 

10. Normalized voltage equations using flux linkage as a variable 

Normalizing Equation A-40 we compute the following. 

"oû B/'B = iou é - dT ̂ou -if - ̂  âr ̂ 
d . '"B d 

" - «'-u % Vg dt̂  o 

ou '(̂ u'̂ ^̂ nu) ̂ ou ~ 3Lnu jt̂  ̂ ou ~ dt̂  ̂ ou 

'dur 
"B 

ri , — - — -A_ X , - ̂  WgX 
VB Vg dt̂  d Vg B q 

'du = - r i X — U..A, u du du u qu 
u 

qu 

V. 
-V FuT 

'FB 

" fû qu % ̂du  ̂̂qu 
u 
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-V Fu F̂u ̂ Fu ~ dt̂  ̂ Fu 

0 = V 
V, DB 

Duv. DB 

. % "B d 
® ̂  VjjB " Vjj3 dt̂  

0 = -
""Du V" dT 

u 

0 = 

r 1 Zsm _ fh- _d_ A 
1 VQB % 'i'u " 

"Q" • dï; 

Writing the above equations in matrix form the following expression 

results. 

o 

d̂ 

-VF 

0 

. 0 _ 

r+3rn+3LnPu  ̂

0 

0 

0 

0 

0 

r 

0 

0 

0 

0 

0 

0 

r 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

"io" 

id 

F̂ 

1 

0 

0 

0 

0 

0 

0 

Pu 

—w 

0 

0 

0 

0 

+w 

Pu 

0 

0 

0 

0 

0 

0 

u 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

per unit [A-43] 
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D. Equivalent Circuit Using Mutual and Leakage Inductances 

From the preceding discussion it is apparent that with the machine 

base quantities chosen in this development the dimensional and per unit 

equations are the same. Consider the flux linkage Equation Â-18 written 

in per-unit form with now referred to as X*. 

' ^ o  

Xp 

-Xq. 

CLo-Ao)+&o 0 0 0 0 

0 (Ld-&d)+Ad 0 +/372Mp 

0 

0 

0 

0 

0 

0 

0 

+/37̂ F 

+/̂ D 

0 t 

(Lq-2q)+2q 0 

0 

à 

i/âTiMQ 

0 +/372MQ 

(Ljr-Jlp)+S,jt 0 

MR ° 

0 0 (Lq-£Q)+S,Q. 

"io" 

id 

iq 4 per 
ip unit 

in [A-44] 

.Iq. 

Set ij = 1.0 pu and all other currents equal to 0. The d-axis 

mutual X's are 

(Ld-̂ d) = = yS/ZMg [A-45] 

If ip = 1.0 pu and all other currents are zero then the d-axis 

mutuals are 

j3/2Mp = (Lp-Zp) » lA-46] 

and similarly when ig = 1.0 pu 

Ts/iWjj = = (Ljj-Zjj) [A-47] 

Similar evaluations of the q-axis mutual X's yield the following 

results. 

(Lq-̂ q) = yâ/ZMq [A-48] 

= (Lq-ZQ) [A-49] 
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The per-unit mutual inductances in the d-axis are all observed to 

be equal so define the magnetizing inductance in the d-axis as follows. 

Lad = (Ld-&a) = (V̂ F> = % = [A-50] 

The per-unit mutual inductances in the q-axis are also the same and 

the magnetizing inductance in the q-axis may be defined as follows. 

'•AQ ' . (Lq-tq) [A-511 

where 

&a = &d = q̂ 

is the armature leakage inductance in per unit and is the same in both 

axes. 

Define 

ÂD ~ ÂD̂ d̂ [A-52] 
per unit 

ÂQ ' I'Aq<i, + V 

The flux linkage Equation A-44 may now be rewritten in terms of 

mutual and leakage flux linkages. 

= 
= 0̂̂ 0 

d̂ = ÂD + *ald 

\ = 
° ÂQ + â̂ q 

4 = = 'AD + 

= 

ÂD + 

' 'aq + 

per unit [A-54] 

The machine voltage Equation A-42 may also be rewritten in terms of 

mutual and leakage flux linkages. 
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ô -(rf3r̂ )î  - pX̂  where X̂  *̂ 0 o 

d̂ = —rij - uiX — a q P̂ AD - *aPid 

-rlq + " P̂ AQ - AaPiq 

•Vp = 
"VF - = -rpip - pX̂  - Appip 

0 = 
~̂ D̂ D ~ P̂ AD D̂P̂ D 

0 = 
"̂ Q̂ Q " P̂ AQ - ̂ qpiq 

o n' 

per unit 

[A-55] 

The equivalent circuits for voltage Equation A-55 are shown in 

Figure 60. 

E. Development of Analog Computer Equations 
for a Synchronous Generator 

Eliminate currents between flux linkage equation. Equation A-54, and 

the voltage equation. Equation A-55. 

X. 
io " 

Id 

o 

F̂ 

Lo + 

d̂ - ̂ AD 
a 
a 

' ̂AO 

â 

4 - ̂ AD 

4 

- ̂ AD 

'q - ̂ AQ 

per unit [A-56] 
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d-axis 

<" A, 

p \ AO 
+ 

+̂'F̂ 'D 

(' ̂AD -T'l 

V 
t -It' 

-I 'D 

q-oKis 

(JO A, 

o-axi« 

r+3r 

-V 

p\̂ L±3L ° C'-N V. 

Figure 60. Equivalent circuits for synchronous machine 
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From Equation A-52, 

ÂD ~ ÂD 
ÂD . ~ ̂ AD . '̂ D ~ '̂ AD X-n  -  X,  

ÂD ÂD 

Ap 

 ̂  ̂+ is ., 
"a 4 "D  ̂

'] 

[t ̂ t ̂ t 

"AD 
' \ j  

d̂ . F̂ . D̂ 

^ 4 ^  
"AD 

Define 

hm = 

JL + Ĵ  + L. + Ĵ  
"AD â 

So 

ÂD = H© M + ̂  + ̂ ' 

Similarly from Equation A-53, 

ÂQ " ÂQ [̂ q 

ÂQ AQ 
~ ̂ AQ . " ̂AQ 

*a \! . 

L 

ÂQ 

AQ 

J_ + 1. + ̂  
ÂQ â 

ÂQ "— + —1 
_̂ a Q̂J 

AQ L 
'AQ 

^ + 
Ï] 

[A-52] 

[A-57] 

[A-58] 

[A-53] 
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Define 

So 

ÂQ 

ÂQ ÎQ 
. a a 

[A-59] 

[A-60] 

Eliminate currents from Equation A-55 using Equation A-56. 

dt̂ ou ou a„̂ +3L„̂ ) 

But 

_1_ = l _ d _  
dt„ a)g dt 

so 

ou 

r +3r 

To compute write 

'du 
= -r 

u 
d̂u~̂ ADu 

'•au 

d d̂u ̂ ADu 

&au 

[A-61] 

'du 
-r. 

) - U A _ _É_ X 
% du ADu' u qu dt du 
au u 

and 
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Mu 
"BJ*-" 

du 7̂  (̂ ADu 
au 

d̂u) - ̂  \u dt' [A-62] 

Similarly for Xq̂ , compute 

V = _r q̂""̂ AQu - — A - p q̂u'̂ AQu 
qu u "û du dt̂  ̂ AQu âu dt̂  

q̂û ÂOu , d 
\u ' -̂ u s. + (̂ î du - dT ̂qu 
 ̂ *au u 

V ' dt. rA-63] 

J au ® 

Apu Is computed from 

-Vy„ = -rpijliSiliiE!!! - _â_ Xpu 

«ru 

or 

Tpu 
F̂u = l'̂ Fu + — (̂ ADu-W [A-64] 

Fu 

Finally X̂  and Xq  ̂are computed as follows. 

-  ̂CAn„-̂ AT>„) - 3T- A.n.. - £i —  ̂£du  ̂̂ dt̂  ̂ ADU -̂DU dt„ a Du 

B/H 

and 

+ ̂D" (̂ ADU-̂ DU) [A-65] 

0 = _r (Aqu-\Aqu) __d_ _ _d_ (̂ qu-̂ AQu) 
Q" Q̂u dt̂  ̂ AQu Q̂u dty 
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(X.n..-An„) dt. tA-66] Q̂u ~ WBf '̂̂ AQu"'̂ Qu 

1. Torque equations 

The equation of motion of the machine rotor may be expressed as 

2 dw 
J — —  =  T j j j  -  T g  n e w t o n - m e t e r s  [ A - 6 7 ]  

where 

w = speed of rotor in radians/sec 

p = the number of poles of the machine 

Tjjj, Tg = mechanical and electrical torque, respectively newton-meters 

2 J = rotor inertia kilogram-meter 

This equation may be converted to per unit as follows, from 

fundamental concepts 

P = wT where P is power in watts [A-68] 

Since base speed and base power (base volt-amps) have already been 

defined, base torque is defined as follows. 

B̂ " B̂̂ B 

Tg = Sg/ug [A-69] 

Base moment of Inertia may also be defined as follows. 

[A-70] = J Aâ 
dt 

so Tg = Jg wg/tg 
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2 
or Jg = Tg/wg since tg = 1/wg [A-71] 

Equation À-67 is now normalized. 

2 dŵ WR 
fVBdï^ = VB -

and 

2 *̂ '̂ u 
— J„ —- T - T 
p " dty mu eu 

[A-72] 

Rather than specify the moment of inertia of a machine rotor, manu­

facturers generally supply the inertia constant H where 

internally stored energy at synchronous speed r. tit 
" - rated KVA Sf machLe 

and J = 2 UgH. Again base H is defined in teirms of previously defined 

base quantities. 

JB ~ 

u  = i  ̂
B Wg wg3 [A-74] 

Then Ĵ Jg = 2wgĤ Hg 

Ju = 2 [A-75] 

As noted previously all base quantities are defined in terms of the 

rated values of the machine. Sg is the rated single-phase output of the 

machine and the rated KVA of the machine is then 3Sg. From Equations 

A-69 and A-71, 
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"B 

so the moment of Inertia of a machine operating at rated conditions is 

J _ r̂ated 
rated 3 

(̂ "rated) 

expressed in terms of single-phase quantities, or 

J ' = ifïâïîi . 3jg 

(wj-ated) 

expressed in terms of 3-phase quantities. 

From Equation A-73 

2 
H = ac rated conditions 

1/2 JgWgZ 

SB 

2a)B 

But H = = 1/2 0) 
B 

so = 1/2 

and Hg = 1/ŵ  
B B 

Equation A-72 is now expressed in terms of 

^ = £ 
«̂:u 2 2«u -] 

Define 

Tau ' T„u - êu lA"??) 
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Equation A-76 is now integrated to find 

"u • ''(u + »ou 

where is the initial value and equals 1. For purposes of analog 

computer simulation, integration should be with respect to time rather 

than normalized time so Equation A-78 is modified as follows. 

'.[t] 
"" • % * '' 

so 

MA" 

% = 2 1^1 dt + 1. [A-79] 

where H and t have dimensions of seconds but w and T are in per unit. 

Define 

' 2 [M] / 

Then 

0)̂  = Ao)̂  + 1 [A—81] 

From Equation A-4 

0 = cogt + 6 + 90° electrical radians [A-4] 

Define 

0) = 6 = Ug + 6 [A-82] 

and converting Equation A-81 to dimensional quantities by multiplying by Wg 
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w = Aw + Wg [A-83] 

Compare this with Equation A-82. 

Aw = 5 radians/sec [A-84] 

Integrating Equation A-84 

/ Aw dt + radians [A-85] 

So 

5 = (57.3 decrees) [w dt + 6„] mechanical [̂ -86] 
radian J ° degrees 

2. Electrical torque equation 

The following dimensional equation for electrical torque is given 

by Lewis (75). 

Tg = [̂Xjiq - Xqlj] newton-meters [A-87] 

Normalizing 

êû B '2̂ d̂̂ qû B ~ ̂ q ̂ dû B̂  

êu ~ ^̂ d̂û qu " ̂qû dû  [A-88] 

The above choices of base quantities cause the dimensional equations 

and normalized equations to have the same form. Note, howver, that Sg 

which serves as a base for power is defined in terms of rated line-to-

neutral machine terminal voltage and rated line current. A machine 

delivering 1 pu terminal voltage and 1 pu terminal current has a 3 0 power 

output of 3 pu. With the above choices of bases, a two-pole machine 
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operating as above has mechanical and electrical torques of approximately 

3 pu also. 

If the generator were unloaded, differentiation would need to be per­

formed on the analog computer to develop the terminal voltages. Placing 

a large resistance on the machine terminals allows the terminal voltage 

quantities to be measured without actually performing the differentiation 

(68). The following equations relate generator currents 1̂  and 1̂ , 

transmission line currents 1̂  ̂and 1̂ ,̂ and terminal voltages Vq and v̂ . 

\ = K(lq-iqt) ^̂ -89] 

Vd = R(ld"ldt) [A-90] 

where R is the resistance placed at the machine terminals. 

The rms equivalent magnitude of the machine terminal voltage is found 

from Vj and v̂  as follows. 

'todq ° ° /'d + \ IA-91] 

3. Infinite bus equations 

Assume the synchronous machine is connected to an infinite bus 

through a transmission line having Impedance Eg + jXg ohms. 

Vg = stator base line-to-neutral voltage rms 

= infinite bus voltage line-to-neutral rms 

Define the abc infinite bus voltages as follows. 

Vgoo = y/zVg cos Ugt 

V̂ oo = y/zVg cos((Ogt-120) volts [A-92] 

Vcoo = v/̂ Vg cos(wgt+120) 
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A circuit diagram showing phase a of a synchronous machine connected 

to an infinite bus through a transmission line is shown in Figure 61. 

From this figure the following matrix equation is written since phases b 

and c are similar. 

b̂c ~ b̂c" ®Ê bc ^̂ bc volts [A-93] 

The above equation is transformed to the odq reference system using 

the Park-type transformation as follows. 

[A-94J 

where 

V , 
-abc" • B 

cos Wgt 

cos(wgt-120) 

cos(ugt+120). 

volts [A-95] 

Transforming the above equation and using the fact that 0 = Wgt + 6 

+ 90, 

B 

0 

-sin S 

cos 6. 

volts [A-96] 

Pi is computed as follows. By definition 
abc 

i , = Pi . 
—odq —abc 

Differentiating 
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Figure 61. Synchronous machine connected to an infinite bus through 
a transmission line 
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i ̂  = Pi -
—odq —abc 

+ Pi 
—abc 

So 

P i  ̂  = 1 ,  -  P i  ̂  =  i  
abc —odq —abc ~odq 

where 

• -1 
PP i 

odq 
[A-97] 

• _i PP = (D 

0 

0 

L 0 

0 0 

0 -1 

1 0. 

[A-31] 

Equation A-94 is now rewritten as follows using Equation A-97. 

•̂ dq " d̂qoo ÊÏodq Ê̂ odq ~ Ê̂ —̂ dq 

If the above quantities are substituted into Equation A-98 the 

following matrix equation results. 

[A-98] 

"V - 0 "io •y • 0 

d̂ -sin 6 +«E id +1̂  id -coLg 0 

_+cos 6. Lv Lv _ 0 

0 0 

0 -1 

1 0. Li, 

lA-99] 

Currents are subscripted with "t" to indicate currents flowing from 

the generator terminals to the infinite bus, and the d- and q-axes 

voltage equations are solved for î  ̂and respectively, yielding 

idt = [Vj + yiVg sing - Rgî  ̂ - OJLElqJ 

iqt = [Vq - cosô - Rgi + ô Lgî .̂] 
LgP 

[A-lOO] 

[A-101] 
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The equations are normalized as follows. 

idtû B 
% , rr . _ 

LnW* " Eu du LgWg 'duLg— +v/3sin6 
B "3"B 

- "̂ û Eû qu "B̂ B̂ B 
UfiLB 

Dividing through by Ig 

d̂tu tit du N/̂  sinô - Rguldtu ~ '̂ Êû qtu 

Similarly, 

Iqtû B 
ûP 

qu 
WB̂ B 

V5 c°s« - W 
qtu ojgLg 

+ "uWqtu "WLBiB 

B̂̂ B 

qtu 

Dividing through by Ig 

-  ̂f K" • ̂  - ®Eu\tu + "u'Bû dtu 

[A-102] 

dt [A-103] 

[A-104] 

dt [A-105] 

The equations necessary to represent a synchronous machine on an 

analog computer are implemented as shown in Figures 62-66. In these 

figures "a" denotes the time scaling factor and LC denotes a level change 

in voltages. 

F. Governor Representation 

A simplified representation of the governor system of a synchronous 

machine is shown in block diagram form in Figure 67 (7). Typical 

constants are as follows (19). 
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'adu 

ta 

sidu j 
du 

'au 

^fu 

^fu 

îjdu 

'•Du 

f 

">^d 

-Xd 
o 

^md^*f 

Q 
t'MT— 

^md^d "-md' 

[A-58] 

lad 

mu ^^adu~^du^ - tv] dt [A-62] 

m 
-xd 

"e/o W) r/a jl 
d 0 

'fu 
w. b y j^fu (^adu'^fuj) tA-64] 

^du 
= w. / fpuf^adut^du) &Du 

dt [A-65] 

mo 

-ar 
oy 

-O— 

-Xr 

Figure 62. Analog computer Implementation of direct axis equations 
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^aqu " %q: 
r ̂  + ^1 

" L Aau lA-60] 

-x( o 
- X c  

O—I 
'•Mc/^a 

ao 

qu /[-'"b i I'Vqu 2 
u^V ^AQu/ + dt 

au "b 
[A-63] 

afk \ 

aqu wb 
f w"w 

' V 

[A—66] 

m. 

±9. 
oi 
CH 

Figure 63. Analog computer implementation of quadrature axis equations 
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eu 
£ 
2 R^du^qu ^qu^du^ [A-88] 

au T - T 
mu eu fA-77] 

T 

-T„ o-^ 

Figure 64. Analog computer implementation of torque equations 
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Aw.. f fe hn [A-80] 

p/4aH rTSw au), 

u)u - awu + 1 [A-81] 

aw„ 
LC 

o 
LC 

o-^ 
1> 

— lo 1 

57.3 [•̂ b / + ô) [A-86] 

Figure 65. Analog computer Implementation of mechanical equations 
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•-dtu 
^eu 

/pdu+Y^ sin5 - %u^dtu dt [A-103] 

u) /a u; /oL 
B , B E 

qtu - Wqtu + dt rA-1051 

/aw/ol %/* 

'du ^u^^du ~ ̂ dtu^ 

-'d 

[A-90] 

'dt 

—v-

qu = *u(iqu - iqtu) [A-89] 

-i. 

C> 
3_ 

Figure 66. Analog computer implementation of load equations 
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high pressure 
turbine 

l+sT, 

bowl speed 
relay 

control 
valves 

servo 
motor l-f 

reheoter intermediate and 
low pressure 
turbine 

w, 

speed 

governor 

Figure 67. Block diagram of the governing system of a synchronous 
machine 
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.05 sec f  =  .23 

''^SM ^ .15 sec K3 = .70 pu 

!l .10 sec 

II 

20. pu 

"^EH 
10.0 sec 

The analog computer diagram is developed using Appendix B of (40) 

and is shown In Figure 68. 
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••a) ref 

'/^sr '/tsm 

r~CM r~0— 

-o-^—o— ̂ >1—o- ^ 

ON 

Cg 

o 
• 0). 

Figure 68. Analog computer diagram of the governing system of a synchronous machine 
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X. APPENDIX B. DEVELOPMENT OF A LINEAR MODEL OF A SYNCHRONOUS MACHINE 

The following nonlinear equation was developed in Appendix A and is 

repeated here for convenience. 

" Vo 't+3T^ 0 0 0 0 0 ~ 
po" 

^d 0 r +a)lq 0 0 id 

ss — 

0 -u)L^ r -w/ïT^p -u/âTâijj 0 'q 

-^F 
0 0 0 

^F 
0 0 

4 

0 0 0 0 0 0 

. 0 . _Q 0 0 0 0 ""Q -

"Lo+3Ln 0 0 0 0 0 - •io" 

0 
^d 

0 v^F v^D 0 id 

0 0 \ 0 0 +/3jm^ \ 
0 0 

4 
0 

4 

0 0 0 
^D 

.0 0 •j/STâb^, 0 0 lq j LiJ 

per unit 

[A-42] 

The above equations are now linearized as follows where all initial 

conditions are assumed to be steady state, i.e., i(0)=0 and initial 

values are constants. 

(vdo+^da) = -r(ido+ida) " (V"a>\^^qo+^qa^ 

- /^(IQO+V) - ̂D<ido+idA> 

" \/^/^(^fo'*'^fa^ -y37^g(igo+i])a) 
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'do 

V da 

(vqo+vqa) 

qo 

qa 

-(vpo+vpa) 

-V. 
Fo 

-V. 

= -rldo "vqiqo " "ov/^^^qo 

= -rij. - 0) Li , - L i w, -
"A o q qA q qo A o qà 

-L„i q qA 
-jïïî^-•qa 

= -rjdp^+ifj) -titim^da^+i^.) f^^do^^da^ 

"^f^^fo'^^fa^ ^^^do"'"^da^ 

"^f^fo 

FA 

(^do+^da^=° = 

"^f^fa - V^^f^da ~ ̂ f^fa " \^da 

-^d^^do+sa^ - y^(ido+L) 

"mrc^fo'^^fa^ ~ ̂ d^^do'^^da^ 

[B-1] 

-v/^va - ̂ dida -t^vfa -v/^vda [b-z] 

+("o+"a)i'd(ldo+w - r(lqo+lqa) 

+("o Â)ŷ (4o+4A) + 

-^q<VSA^ -y^^(^Qo+V) 

+̂ ol'dido - rlqo + "ov/̂ f̂ o + "o/̂ vdo -̂3] 

•*"^d^do"a "o^d^da ~ ̂^qa "o n/^^f^fa 

+y^%iFo^ + "ov^^DA +\/^^"A 

[B-4] 

[B-5] 

[B-6] 

• "Vdo 1B-7J 
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(vqo+vqa)=0 

"^dSa " ^^fa ~ S^da 

•^q^^qo''"^qa^ ~ ̂q^^qo"''^qa^ 

The above equations are rewritten In matrix form as follows. 

0 

The at 

t^dA 
r  

"^FA 

II 1
 

0 

1
—
 

0
 

1 

-^qiqo 

"'̂ q̂ qa " y3/2mq ̂qa ~ lqiqa 

0 0 +a)o yï/ïm^ 

-"ô d :: ° 

0) L 
o q 

0 

0 

0 

0 

0 

0 

0 

-j 

3 "ida" 

^qa 

^fa 

•h 

.iqa-

yâ/âmjj 0 mj 

x/âT^q 

0 0 j3jm^ 

\ 0 

& ^d 0 

0 0 l, 

dA 

qA 

FA 

DA 

QA"* 

-01. 

v/^^^QO 

[B-8] 

[B-9] 

[B-10] 

Do -Ljido - Jîm^i-ro 

0 

0 

0 

[B-11] 

Since at steady state ig = iq = 0, the following equations represent 

the steady-state conditions. 

o
 

1 

V 
qo 

_"^Fo. 

""o^d 

'̂ ô q 0 

r 

0 

o T 

-r F J 

"do 

qo 

l^fo 

[B-12] 
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The torque equation may be written In terms of currents and 

Inductances using Equations A-49 through A-53. 

Te ° i'Adlq - Vdl tA-871 

Neglecting amortisseur effects 

te " ft^w^d + «e^d + wp) iq - {(lq-«a)lq + 

® **" ^ad%^q " ̂q^q^d^ 

• 2 [l^dlpiq + "•d-"-q>idiqi ''""l 

Linearize Equation B-14 

(tgo+tg^) - (^qo"^^qa^ ^^do'^'^da^ ̂ \o^^qa^ ̂ 

T, _ 2. 
eo 2[wfo + (ld-lq)ido] v [b-15] 

T - £ 

eA 2t^AD^%o^qA ^qo^FA^ ^ ^^do^qA ^qo^dA^ ̂ 

^^^^ad^fo •*" (ld-lq)ido} iq^ + ̂ qo^^ad^fa ^da^^ 

Define 

®qo ~ "owfo + "o^^d-^q^^do [b-17] 

^qa " "o^ad^ + %(^d"\)^da 

Then since w = 1.0 pu 
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^eo ' i sqolq. 

^ea • f f V V W  '=-2°' 

I 
Define E . such that 

qa 

v ° v-"ova''di [b-21] 

= "owpa + %0'd-\)ida + - "o^a^di 

= 0), 
'O^AD%A "•• Wo(ld-&a)id^^ " "O^AD^FA %^AD^dA [B-22] 

t 

= %wp. + ''.(:'d-v̂ do [b-231 

. v . • ' 
The linearized machine terminal voltage may be found as follows 

for the balanced case. 

i'tl • i'todql = J''I * \ 

<'to + ° (̂ do+'di)̂  + <v̂ q4̂  ̂

So 

" 'do^ + 

"tl = -^'d4 + (B-25: 
to ^to 

where the minus sign Is added to the first term since v. Is negative. 
do 

Transmission line equations given in Equation A-98 are linearized 

as follows. 
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sin(ô^+6^) = sin 6^ cos 6^ + cos 6^ sin 6 
A 

cos(6^+6^) = cos 6^ cos 6^ - sin 6^ sin 6^ 

which for small 6 become 

sin(ô^+ô^) = sin 0^ + 6^ cos 6^ 

cos(6 +6.) = cos 6^ - 6, sin 6_ o ti oa o 

Vjj = -sJTVg sin 6 + Rgij + Lgi^ + uLgi^ 

(^do+^da^ = (si" "^o ^o) + ̂ ^^do+^da^ 

+ lscido+idA) + 

^do = - Vg sin 6^ + Rgij^ + w^Lgigo 

^dA = -y/^Vg cos 5^5^ + Rgij^ + Lgij^ 

%^e^qa ^e^qo'^a 

\ = ^ + ̂ \ + lgiq - ojlgi^ 

(V^qA^ = (cos 6^ - 5^ sin 6^) + Rg(i^^+iq^) 

+ VV> - (Wo-k^aileddo+lda) 

\o = Vg cos 6, + Rgigo - WoLgijo 

\A = -J^ Vg sin 6^ 5, + K^iq, + 

o^^da ~ ̂ ^do^a - to. 
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À. Synchronous Machine Phaser Diagrams 

In this section the mathematical relationships necessary to solve 

for the synchronous machine initial conditions are developed. If balanced 

operation Is assumed, these relationships may be represented In a two 

dimensional vector space, and following reference (31) these diagrams will 

be called synchronous machine phasor diagrams. 

Using Equation A-3 

-^bc 

-1 
P V [B-32] 

so 

^a 

where 0 = (wgt + 6 + 90°) 

and where it is implied that 6 = 6^ throughout this development. 

[B-33] 

[A-4] 

Substituting from Equation B-12 for v^ and 

= yiTi[(-rldo-"o^q^qo^ cos(w^t+g+so") 

+ (+WoLjl j^-rlqg+w^/s/lMpig,^) cos (w^t+g) ] 

since sin (a)gt+6+90°) = cos(wgt+ô). 

This equation may be written in phasor form as follows. 

V 
a 

= -r /6+90''+ ias. ̂  - X y&+90* 

1. 
[B-34] 
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ojo^f^fo 
where = [B-35] 

•F 

Also igbc ~ 2"^ -^dq using Equation A-3 lB-36] 

ig = j2/3[±^ cos 8 + iq sin 0] 

which may also be written in phasor form as follows. 

— i 
= — /S + 90° + -3. /5 [B-37] 

73 JJ 

Define 

Ï = +Ï, + Ï [B-38] 
a d q 

Then 

1 = 1 ^  / 5 + 9 0 °  [B-39] 

A 

I = 7^/5 [B-40] 

^ 73 

where Ij and are rms "stator equivalent" quantities (6). 

Solving Equation B-34 for Ep and using Equations B-38, B-39 and B-40 

Ep Zi5_ = V^+rï^+Xq Iq /6+9Q° -X^ Ij Zi_ [B-41] 

which may be written as 

Ëp - ïq Vd tB-421 

The resulting phasor diagram is shown in Figure 69. 

Define 
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raferenc# 
axil 

Figure 69. Phasor diagram of a synchronous machine 
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"tabc ° 'a [B-43] 

So from Equation B-33 

^tabc = ^a = v/iTirv^cos 0 + v^sin 0] 

= y273[VjjCos(u)gt+6+90®) + VqCOsCojst+fi)] [B-44] 

Rewriting the above equation in phasor form 

\abc " 'a = 7=- + 7^ Zi- [B-45] 

V ,  V  

7^ /6+90° + rL 
73 /3 

Define 

Va = +V^ + Vq [B-46] 

Then 

Vj = ^=. /5+90° lB-47] 

v 3 

V  =  — / 6  [B-48] 

/T 

where Vj and Vg are rms "stator equivalent" quantities. 

Let a be the angle from the q-axis to the terminal voltage and (p be 

the angle between terminal voltage and current. 

Then 

Vj. /ô-g = = +Vj /5+90° + Vq /6 [B-49] 

and 

it /g-a-(i) = \/3 = +id /6+90° + î  Zi_ [B-50] 
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From Equation B-34 neglecting armature resistance r 

t̂ zizsl = -̂ q iq /(+90° + x̂ l̂  /j_ + oiol^ipo 

Add and subtract 1^^ /fi 

ZSzsL =-Vq Z«±20" + x^iF„Zi.+(VV'a^" 

Using Equation B-17 

Vj Azo. - ^S±20! + Zi_ + X,ij /L 

V Zs. - Vq 

- /^+ jxqiq^ + jx^ij a+90° 

= vj /{-g +./3jx^ ̂  /w0° +^z«_ 

= Vj 6za.+ jyj X^ (+ïd+ï,) 

= vt / i-tt + jyj x^ (ïg) 

Ig may be decomposed Into currents In phase with and lagging 

by 90°. Define 

ir /6-a = f ^  ig 4» /6-a 

/6-a-90° =/3 sin /6-a-90° 

Inserting the above equations into Equation B-52 

Eqo ^ ZVa+ jX^d^ /6-a + 1^^ /fr-a-90°-) 

= Vt /6-a + X 1^ /(S-oc<-90° + X 1 /ô-a 
t q r q % ^ 
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Thus 

l®qo! 

If the variables in Figure 61 are transformed to the odq coordinate 

system and if R is assumed to be large, thus its effect negligible, the 

following equation results. 

vfizol = /d-g - (re+jxg)l,. /6-0-* 

= /6-a - (Eg+jXg) (1^ /6-a + i^ /6-a-90°) 

= Vj. /g-g - (Rg+jX^) (ij, /5-a-90°) 

Vj. Zfizg.-Rj.ij. /S-g + jR̂ î  Ziza-jXgij. /5-g-Xj,î  ̂/ s -a  

= (Vj.-Rgij.-Xj.i^) /£6zg + j(-Xgij.+REix) /6-a [B-56] 

The resulting phasor diagram is shown in Figure 70 where all subscript 

"o" have been deleted, a may be found from Figure 70 as follows. 

sin a = ir \^\o [B-57] 

cos g = (V(. + i^ Xq) EB-58] 

iqo = if sin g 

= V'^IO " "x ir P-S»! 

Ij^ = -Ij. sin a - i^ cos a 

• - (& 't + ix v'®10 

Find 6 from Figure 70. 

Vg cos 6 = v^ cos a - (i^ Xg+i^ Rg) cos a + (Rg 1^ - Xgij.) sin g 

VJ COS s = (Vj-1^ Xj. - 1^ RgXvt + 1^ Xq)/E^„ + 
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d - axis 

Figure 70. Phasor diagram of a synchronous machine connected to an 

infinite bus through a transmission line 

I 
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cos S = v^[Vt + 1^ (XQ-XG) - Vg 

- (if + 'b [®-"> 

The q-axls component of terminal voltage is 

Vq = Vj. cos a 

- ("t + Xq)/E,. [B-62J 

The d-axis component of terminal voltage is 

"d = -vq [b-g3] 

B. Synchronous Machine Terminal Voltage 

The loading of a synchronous machine is normally given in terms of 

the power output and the power factor. If the infinite bus voltage and 

tie line impedance are also given, the terminal voltage may be found as 

follows. 

Let 

ïa " lazzll 

\ 

Then from Figure 61 neglecting R 

'b ° - ("e + JV h 

The single-phase power output of the machine is 

P = Vg Ig cos <|) [B-65] 

where * = tan"^ Q/P = cos"^ P/S [B-66] 
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P/(V^ cos (j)) 

P/(Vg cos (j)) /- (j, 

So 

'B va - (% + jv 

- RyP X„P 
V - —=i- - —=— tan <|i - j 

— (cos j) - j sin (Ji) 

xep rep 

l^a "va 
tan <|) 

, 2 _ _jc 
'b' 

2 p2(r| + x3) 
-2P(R^ + Xg tan *) + V] + _ ^ ^ 

^ ^ cogZ <p 

Define 

Then 

?g + 2P(Rg + Xg tan •) 

„ 2 , + x̂ z) 

^ cos^ (ji 

and 

- C + p2(Rg2 + Xg2)/cos2 4, = 0 

[B-67] 

[B—68] 

[B-69] 

[B-70] 

[B-71] 

[B-72] 

[B-73] 

[B-74] 

V. C ± n/C^ - 4 P^(Bg^ + Xg^)/cos2(j) 

2 

[B-75] 

To transform from the phasor domain to the corresponding instanta­

neous rotor quantities, the phasor quantities (rms magnitudes) are 

multiplied by ,yT. Thus 

-/â \ 

[B-76] 

[B-77] 

[B-78] 
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C. Development of a Linear Model of a Synchronous Machine 
Connected to an Infinite Bus 

Assumptions: Terms resulting from the following effects are neglected. 

1) Amortisseur effects 
2) Armature resistance 
3) Armature x terms 
4) Saturation 
5) Load terms 
6) Load 0)^ terms 

The required linearized equations are repeated for convenience 

neglecting above effects. 

1. Machine equations 

^da = -%\\a 

" WO^DIDA "O^AD^FA [B-80] 

-^fa ° -'fip - ̂ ad ^da " ̂f ̂ a [b-81] 

^ta = -tdo/vto ̂ da + ̂qo/^to [b-25] 

^A = "O^ADLFA + %(LD-LQ) 1^^ [B-18] 

\a ° "o^ad^fa + ("owda 

^ea = + vqa^ 

2. Machine load equations 

v - - «0 «4 + v,1 - "ovda 

•"di " - 'o ̂ 4 + Vdi + "o'iV 
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w, 

Replace in Equation B-73 by Equation B-71. 

+ "ô 'dida = - sin 6̂  6̂  + r̂ î  ̂- cô lgî  ̂

Use Equation B-18, adding and subtracting 

J^AD^FA + '"o^d^dA - "oS^dA sin 6^ 6^ = Rgiq^ - ̂ ^0^^ 

So 

+73 % sin 5„ 6^ - - (w^Lg + w,L^) 

Combine Equation B-79 and Equation B-83. 

•"ovqa " ^o "^a + %^da + "o^^qa 

Rearranging. 

yivg cos 60 *6 = ®E^dA + ̂ "o^ + iqa 

Equations B-84 and B-85 are solved for i^^ and i^^ as follows. 

da ~ '^o^q^da 

[B-84] 

[B-85] 

cos 6 6, 
o A 

LSqA +73 Vb sin 6„ 5 J 

\ (wo^e+wolq) 

l-cwolg+wglq) rg 

' "i 
dA 

-V-

CjJ Vg cos 5p 6^)Rg - (EgA ^o ^A> 

'da 

qa 

D 

(Eqa +yrvg sin 6^ 6^)Re + (/TVg cos 6^ 6^^ (tOoLE+oJoLq) 

2 2 
where D = R^ + (w^Lg + w^Lg) 

[B-86] 

[B-87] 

[B—88] 
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"da 

"-da 
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Replace E . with E as 
qA q 

follows. 

V - "gCLq-lj) 

. (77 Vj, cos - ®q4 +7^ Vg sltt (»„LE+a,„L,) 

D 

WO(LQ-AD)ldA (%^E+(^o^q) 

D 

(Vâ Vg cos 6„ 6^)Ej. - <v «0 «l» ("o^-^o^q' 

[B-21] 

+ "oV^ - "o^<Vd> 

Ma 

(73 Vg cos «, «^)gg -(Eqa +yTVg sin 6„ Sj) (%Ie+«„L,) 

r2 + »„ v2"o vq-^o%^-"o\h^''di'q-"o\^'*"o^''d'b 

••dA 

(7? Vj cos «„ «^)Rg - (Eqa +yrvg sin 6„ S^) («.^Lj4»^L^) 

ê '*' (wô e + vd̂  + wô q) 

'da 

(JTv^ cos «„ «^)Rg - (E^ +f3 Vg sin {„ + .^L,) 
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Define 

a = + wo^q) 

So 

( J3 Vg cos 6^ 6^)Rj. - (Eq^ + Js Vg sin 6^ 6^) (a,^Lg+a)^Lq) 

"-da [B-89] 

Similarly from Equations B-87 and B-21 

+ yi V, sin {^)Re 
_aA_ 

^ (yi Vg COS 6^ 5^)("oWq) - VoCLq-^d^^dA 

D 

qA 

(e^a •>• sfï S °i° «. 

( yâ Vg cos «g -

71 Vg cos «psj - <V + VâVg sin S^) C»oLg+»„V" 

'qA 

h Vo(Lq-&d) ((^o^ + "o^q) 

D "*" DA 

+ y^Vg sin 5o 

+ yj Vg cos 6^ 

^ ̂ "o (la-ad)(wole + "o^q> 

D DA 

+ "o\) vo^^q~^d^®e 

D DA 
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= E 
,  ̂ '̂̂ ô E'̂ OV Vô V̂ d̂ ^̂ ô '̂ oVl 

qA ad 

+ 73 Vg sin 6^ 5 

+ 73 V3 cos 5^ 6^ 

% be^oclg-ad) (^pi^e+^oi-q) 

d da 

('̂ ô '̂ ô q) [̂ +(%̂ '̂ 0̂ d) ('̂ ov"ô q̂  ]-*ewo(lq-&d) 

ad 

i . = E 
qA qA 

•i™ovd'̂ o\4;-̂ o\̂ -"<,%'d̂ ô ''d\' 

ad 

y^V] b sin «0 ̂ a 

+ 71 Vg cos 6^ 6^ 

% ReHIq (^q "ii-d ̂  (aioLg+^oLq ) 

d ad 

be\1ï +% vq-% 

+((^o^e'^%^q) (wole+wo&j) (wolg+WoLq) 

ad 

IlEtR^+(»„Vo\'^l + yâ V3 sin 5 
V 
AD 

+ J2 V„ cos 6 6. 
V JJ o A 

ad 

A «0 +y^ Vg cos Ô0 6^ KV^oV 

[B-90] 

From Equation b-81 

-^fa = -ffifa - ̂  % ida - vfa 

-rpip^ - d/dt[l^ijj^ + lpip^] 

lB-91] 
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But Ly-Jip = L^, so 

""^fa ~^f^fa " d/dt[ladlda + ~ 

"^f^fa ~ [^ad^d^ ^ad^fa ^f^fa^ 

"^f^fa " d/dt[eq^ + apip^] 

and d/dt Eq^ = Vp^ - rpiy^ - £^1^^ [B-92] 

Multiply above by Lp/r^. 

^do^^^' ̂ qa (lp/rpyvp^ - (lp/r^) r^lp - (lp/rp £j.ij, 

where = Lp/r^ = open circuit time constant of field. 

Assuming a solution of the form 

ip = k g-c/clp/rp) 

then 

ip = (-vit)" e-'/'v'f) = (-rp/lp)!, 

so 

I I 
T, dE 
do qA 

dt " ®fdA ~ (Lp-Ap)lp 

and since = 1.0 pu 

t 

^do dt ~ ^fdA ~ "o^AD^FA lB-93] 

where E^^^ - ^V'^F^V [B-94] 
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Using Equation B-71 with Equation B-22 

qA - " Vd^dA 
E . = - ojçJljij 

'qa q̂a '"ô d̂ da [B-95] 

If Equations B-95 and B-79 are inserted in Equation B-25, the 

following expression for terminal voltage results. 

'ta % + % V + Vd'dl [B-96] 

Eliminate i^^ and i^^ using Equations B-89 and B-90. 
qA 

v Kà ^ V; cos S„ 6^) j)' 

'to 
+ "o%d 

(/3 Vj COS 5„S^)^-(E^^+y3 Vg sin «„S^) (u„Lj+»„L,) 

t̂a ~ *"5 *a 6̂ ̂ qa 
[B-97] 

where 

k. d̂o 

vto 

JZ Vg sin + /3 Vb cos 

A 

yivb cos 6oeg - /fvg sin 5p(ai^L^+a)^Lq) 

A 
[B-98] 

K, 
vdo ("ô q̂  vqo 

t̂o a t̂o  ̂ 1 
[B-99] 
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From Equation B-93 

i de', 

""do dt ®fdA ~ Wo^'AD^FA [B-lOO] 

By definition. 

mi 
[B-22] 

so 

"-fa 
= q̂a - Wo(Ld-Ad)idj 

ô̂ 'ad 

Take LaPlace transform of Equation B-lOO using above. 

°Wq4 - ®fd4 - V + "o (Ld-*d)lda 

TaVg cos «o«i)%-(E^4+ 3Vj sin «..«i) 

, W ('»oV''o''q) 
l+»id.+ 

®fd Wo(Ld-&d) 

Multiply by 

A 96 

/J Vg cos dqBg - (u)oLe + WoLq) Jï Vg sin 6^ 

1 + "o(ld-ad) (%i^+(^olq 

A 

-1 

Changing L's to X's since w = 1.0 pu 

1 + sT 
do 

-1 

'qa 

,-l 

-1 E A j ®fda 



www.manaraa.com

193 

-1 _ 

1 +% j ̂  JZ Vj[Bg cos S„-(X,+Xj) sin 

Define 

K, 1 + 
(xd-xaxxq+xg) 

-,-1 

[B-101] 

So 

1 ® Ws^qA ŝ̂ fda + [«e -̂(W *6 

Define 

(xj-xd) 
v/^ ^B A I-®E ^o +^X +Xg) sin 5^] [B-102] 

So 

qA 

kŝ fda 

1 + *tdo*3 1 + «w3 * 

[B-103] 

Substituting Equation B-90 and Equation B-21, with Equation B-81 

substituted into it, into Equation B-20, and setting p = 2 

- V 

+ 1. 
qo gqa-wo(lq-ad) 

cos 6o6^)RE-(EqA+/3VB =1" < W"o^q>" 

Eqov/Ï ̂ B \ «0 + E 0/3 Vg cos 6^ (u^I'E+'^o^d) 
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lqoWo(Lq-&d)»/3 ?B COS V3 sin 

\oK^ 
+ iqcfqa + 

lqo"()̂ 'q''*d) (k'oile+wpl'q) ̂ q̂  

A 

êa ' kl*a ^2\à [B-104] 

where 

ki 
e JT vg 

[% sin ÔQ + (WgLg+WoAd) cos 6^] 
[B-105] 

iqo 73 vg 
J r'̂ o<i'q-̂ d)k%-̂ ô q> ô ""ô -̂̂ d) cos 

k, 
ree qo 

+ i 
qo 

, %(\-̂ d) (wglg+wglq) 
1 + . [B-106] 

The following equations describe the linearized system of a generator 

connected to an Infinite bus through impedance + jX^ where the constants 

have been previously defined. 

q̂a 
= kgefda k3k4 

l+sI^o% 1 + pu [B-103] 

eA 

'ta 

A(i) 

+ *2*,a 

+ H\, 

pu 

pu 

p/2 1/2H JT^^ dt pu 

/ 377 I Aoj^ dt radians 

[B-104] 

[B-97] 

[A-80] 

[A-85] 
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The block diagram resulting from the above equations Is shown in 

Figure 71 where all subscript "A's" have been deleted. 

rad 
4H» 

377 

Figure 71. Block diagram of simplified synchronous machine 
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appendix g. computer program to calculate initial 
values and linear parameters 
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C THE FOLLOWING PROGRAM CALCULATES INITIAL CONDITIONS FOR A SYNCHRONOUS 
C MACHINE CONNECTED TO AN INFINITE BUS THROUGH A TRANSMISSION LINE AND 
C PARAMETERS FOR A LINEAR MODEL OF THE ABOVE SYSTEM. 
C 
C DATA INPUT IS AS FOLLOWS: 
C 
C THE FIRST CARD CONTAINS LINE RESISTANCE, LINE REACTANCE, DIRECT AXIS 
C SYNCHRONOUS REACTANCE, DIRECT AXIS LEAKAGE REACTANCE, AND QUADRATURE 
C AXIS SYNCHRONOUS REACTANCE (5F1C.5». 
C 
C ONE OR MORE CARDS ARE USED TO SPECIFY THE OPERATING CONDITION. 
C ONE OPERATING CONDITION PER CARD. 
C EACH CARD CONTAINS THE SINGLE PHASE POWER OUTPUT, SINGLE PHASE VAR OUTPUT, 
C AND THE INFINITE BUS VOLTAGE. {3F1C.5I 
C 
C A 999 CARD (FID.5) TERMINATES ONE CASE, THAT IS ONE SET OF OPERATING 
C CONDITIONS FOR A GIVEN SYSTEM PARAMETER CARD. THE ABOVE DATA SET MAY BE 
C REPEATED FOR ANOTHER SET OF SYSTEM PARAMETERS AND OPERATING CONDITIONS. m 
C ' W) 
C A 888 CARD (F10.5) TERMINATES COMPUTATION. ^ 
C 
C A SAMPLE DATA SET FOLLOWS. 
C 
C .02 .4 1.7 .15 1.64 
C 1.0 .62 .828 
C l.r. .62 1.0 
C 999. .0 .C 
C 888. 

1 REAL VBABC/r.O/, EQO/0.0/, IDOODQ/0.0/, IQOODQ/0.0/, 
lVTOODQ/0.0/, VDOODQ/O.O/, VQOODQ/0.0/, DELTA/0.0/, VBODQ/0.0/ 

2 REAL X(5) 
3 201 READ(5,1) <X(I), I = 1,5) 
4 1 FORMAT*5F10.5) 
5 FLAG = X(l) 
6 IF(FLAG.EQ.888.) GO TO 20C 
7 ion CONTINUE 
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33 
34 
25 
36 
37 
38 
39 
6"; 

4": 

& 9 

^̂ 3 
44 
45 
46 
67 
49 
69 

5'; 
51 
52 
53 
54 
55 
56 
57 
58 
59 

61  

1 +VD00DQ*XX(2)*XX(l)/(VTOODQ*A) 
WRITE(6,1» 

1 FORMAT!'0', 'THE LINEARIZED MACHINE CONSTANTS ARE') 
DO 10 I = 1,6 
WRITE(6,2) I, C(I) 

2 FORMATCO», 5X, 'C, lit 2X, ' = ', F8.4) 
10 CONTINUE 

RETURN 
END 

SUBROUTINE CINVAL tXX,P,Q,VBABC»VBODQ,EQO,IDOODO,IQOODQ,VTOODO, 
IVDOODOfVOOODQ,DELTA) 
REAL XX(5), P, Q, VBABC, VBODQ, EQO, IDOODQ, IQOODQ, VTOODQ, 

IVDOODQ, VOOOOQ, DELTA, TTHETA, IIPODQ, IIQODQ, RT3 
RT3 = S0RT(3.) 
VBODQ = RT3*VBABC 
TTHETA = 0/P 
THETA = ATAN(TTHETA) m 
CTHETA = COS(THETA) vo 
CONS = VBABC*VBABC + 2.*P*(XX(1I+XX(2)*TTHETA) 
B24AC = CONS*CONS -4.*P*P*(XX(1)*XX(11+XX(2)*XX(2)I/(CTHETA* 

ICTHETA) 
IF(B24AC) 10,20,20 

IC WRITE(6,11) 
11 FORMATCO', 'B**2-4AC IS LESS THAN ZERO'I 

GO TO ICC 
2C VTABC =SQRT((CONS+SQRT{B24AC))/2. ) 

VTOODO = RT3*VTABC 
IIPODQ = RT3*P/VTABC 
IIQODQ = RT3*Q/VTABC 
EQO = SQRT((VT00D0+XX(5)*IIQ0DQ)**2+(XX(5)*IIP0DQ)**2) 
COSDEL = (VT00DQ*(VT00DQ+IIQ0DQ*(XX(5)-XX(2)I-IIP0DQ*XX(1)) 
1-XX(5)*XX(2)*(IIP0DQ*IIP00Q+I1Q0DQ*IIQ0DQ))/(RT3*VBABC*EQ0) 
DELTA = ARCOS(COSDEL) 
DELDEG = DELTA*180,/3.1416 
SINDEL = SIN(DELTA) 
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63 
64 
65 
66 
67 
68 
69 
7"" 

71 

72 
73 

IQOODQ = (IIP00Q*(VT000Q+IIQ0DQ*XX(5n-IIQ0DQ*IIP0DQ*XX(5))/BQ0 
IDOODO =-(IIPODQ*IIPODQ*XX(5)+IIQODQ*(VTOODQ+IIQODQ*XX(5I))/EQO 
VOODDQ = -IQ00D0»XX(5) 
VOOODO = (VTOODQ*(VTOOOO+IIQOOQ*XX{5»n/EQO 
TEO = EQO*IQOODQ 
WRITE(6,12) 

12 FORMATCCS 'THE INITIAL CONDITIONS FOR THE MACHINE ARE') 
WRITE(6,141 P, Q, VBABC, VTOODQ, VTABC, IDOODQ, IQOODQ, VDOODQ, 

1 VQOODQ, DELDEG, TEO 
14 FORMATCO't 'SINGLE PHASE POWER OUTPUT', 26X, '=', F8.3/ 

11 X, 'SINGLE PHASE VAR OUTPUT', 28X, '=' , F8.3/ 
lix. 'INFINITE BUS VOLTAGE (ABC)', 25X, '=', F8.3/ 
lix. •TERMINAL VOLTAGE (ODQ)', 29X, '=', F8.3/ 
IIX, 'TERMINAL VOLTAGE (ABC)', 29X,'=', F8.3/ 
lix. 'DIRECT AXIS CURRENT', 32X, '=', F8 .3/ 
lix. 'QUADRATURE AXIS CURRENT', 28X, '=' , F8.3/ 
lix, 'DIRECT AXIS TERMINAL VOLTAGE', 23X , '=', F8.3/ 
11X, 'QUADRATURE AXIS TERMINAL VOLTAGE', 19X, '=', F8.3/ 
1 IX, 'DELTA=ANGLE FROM INFINITE BUS TO Q-AXIS IN DEGREES =', F8.3/ 
IIX, 'MECHANICAL TORQUE', 34X,'=', F8.3) 

ion CONTINUE 
RETURN 
END 
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THF MACHINE AND LINE PARAMETERS ARE 

RE = C.020 
XE = C.40n 
XD = 1.700 
XD« = C.150 
XO = 1.640 

THF INITIAL CONDITIONS FOR THE MACHINE ARE 

SINGLE PHASE POWER OUTPUT 
SINGLE PHASE VAR OUTPUT 
INFINITE BUS VOLTAGE (ABC) 
TERMINAL VOLTAGE <ODQ) 
TERMINAL VOLTAGE (ABC) 
DIRECT AXIS CURRENT 
QUADRATURE AXIS CURRENT 
DIRECT AXIS TERMINAL VOLTAGE 
QUADRATURE AXIS TERMINAL VOLTAGE 
DELTA=ANGLE FROM INFINITE BUS TO Q-AXIS IN DEGREES 
MECHANICAL TORQUE 

THE LINEARIZED MACHINE CONSTANTS ARE 

CI 3,7128 

C2 = 2.5507 

C3 = C.262r 

C4 = 3.7049 

C5 = -C.5861 

C6 - C.5598 
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THE MACHINE AND LINE PARAMETERS ARE 

RE = 0.C2C 
XE = 0.6co 
XD = I.70P 
X0« = C.15P 
XQ = 1. 64C 

TH= INITIAL CONDITIONS FOR THE MACHINE ARE 

SINGLE PHASE POWER OUTOUT = 1.000 
SINGLE PHASE VAP OUTPUT = 0.620 
INFINITE BUS VOLTAGE (ABO 1.000 
TERMINAL VOLTAGE (ODO) = 2.031 
TERMINAL VOLTAGE (ABC) 1.172 
DIRECT AXIS CURRENT = • -1.591 
QUADRATURE AXIS CURRENT 0.700 
DIRECT AXIS TERMINAL VOLTAGE - -1.148 
QUADRATURE AXIS TERMINAL VOLTAGE 1.675 
OELTA=ANGLE FROM INFINITE BUS TO Q-AXIS IN DEGREES = 53.750 
MECHANICAL TORQUE = 3.000 

"HF LINEARIZED MACHINE CONSTANTS APE 

CI A.8866 

c?  = 2.6731 

C3 = r .2620 

C4 = 3.9067 

C5 = -0 ,8004 

C6 0.5958 
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XII. APPENDIX D. EXCITATION SYSTEM AND COMPENSATION NETWORKS 

The generator used In this study is equipped with an amplldyne 

voltage regulator having a response ratio of 0.5. Because high response 

ratio exciters tend to decrease system damping, thus contributing to the 

dynamic stability problem, the above exciter-regulator was replaced in 

these studies with one having a higher response ratio (58). A rotating-

rectlfier exciter with static voltage regulator having parameters given 

by Perry et (94) was used. This particular exciter had a response 

ratio of 2.23. 

The excitation system was modeled by using the Type 2 excitation 

system representation suggested in an IEEE Committee Report (59). A 

block diagram representation is shown In Figure 72 and appropriate 

constants are given in Table 6. In order to conserve analog computer 

components, the takeoff point for the rate compensation network was 

moved as shown in Figure 73. 

Table 6. Exciter parameters 

^A 400 r̂ max — 8.26 pu 

tA = 0.02 r̂ min = -8.26 pu 

tE = 0.015 ®E max = 0.86 

II 1.0 ®E 0.75 max = 0.50 

II 0.04 tr = 0 

H
 

n 0.05 kr = 1.0 

EfD max = 4.45 pu 
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'ref 

Rmax 

^ , 1 
-1 

l+«tĵ  "K 
\ k 

ka / h«t̂  / / -tî(g)—»- J<£2IE. 

Rmin 

sK. 

Cl» sTpi KI •» »Tpj 

Figure 72. Type 2 excitation system representation, rotating-rectifier 
system 

auxiliary 
I signals 

1̂  

Rmox 

) * • »  k/v 
f int̂  / 

Rmin 

JSeîZEÎ-
% genarotor 

RATE 

kste 

saturoticnl 
function 

l + sc 

h 

Figure 73. Type 2 excitation system as modified for analog computer 
representation 
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Perry et_ a3^. (94) did not give parameters for saturation or for 

voltage regulator limiting so typical values of Sg for this type of 

excitation system were taken from the IEEE Committee Report (59). 

Se max = 0-86 

Se 0.75 max = O'SO 

[D-1] 

[D-2] 

From these two values, an exciter saturation curve was constructed 

as shown in Figure 74. Values read from this curve are tabulated in 

Table 7. Sg is then computed and Sg vs E^g is shown in Figure 75. 

Table 7 also contains the product EpjjSg as a function of Egg. The linear 

approximation of this curve is shown in Figure 76. This function was 

simulated on the analog computer using a manual diode function generator 

to represent exciter saturation effects as shown in Figure 77. 

Table 7. Saturation function 

F̂D A B Se = f - 1 ego X Sg 

0 0.366 0 

0.5 0.688 0.5 0.366 1.83 

1.0 1.366 1.0 0.366 3.66 

1.5 2.050 1.5 0.366 5.50 

2.0 2.750 2.0 0.373 7.45 

2.5 3.500 2.5 0.400 10.00 

3.0 4.350 3.0 0.450 13.50 

3.5 5.330 3.5 0.522 18.30 

4.0 6.500 4.0 0.625 25.00 

4.5 8.600 4.5 0.910 40.80 
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Figure 74. Exciter saturation curve 
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Figure 76. Curve used to set DFG on analog computer 



www.manaraa.com

voltage reference 
I/T,  

FD -V, synchronous 

machine 

limiter limiter 

DFG 

L C — LC 

-CH 

LC 

—o 

Figure 77. Analog computer diagram of the excitation system 
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Limiting values for Vg^were not given but may be calculated from 

max ~ max^^FD max ~ ® lD-3] 

Using data from Table 7 

VR max = 8.26 pu [D-4] 

The analog computer diagram of the excitation system is shown in Figure 

77. 

A. Mathematical Development of Excitation System Equations 

The equations necessary to describe the dynamic and steady-state 

performance of the excitation system are developed from Figure 73 as 

follows (7). 

1. Potential transformer and rectifier 

A suitable input signal for the excitation system may be generated 

by connecting the phase voltages of the synchronous machine to potential 

transformers which have their secondaries connected to bridge rectifiers. 

Three bridges may be connected in series and produce an output voltage, 

v^c, which is proportional to synchronous machine terminal voltage. This 

circuitry may be represented by a first order system having the following 

transfer function 

- - [D-5] 
dc 1 + st̂  

where is a proportionality constant and T^ is the time constant due to 

filtering or smoothing in the transformer-rectifier assembly. Generally 

T^ is small and in this study it is assumed to be negligible. 
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2. Reference comparator 

This component compares to a fixed reference potential which is 

proportional to the desired machine terminal voltage. The difference is 

Vg the error voltage where 

Ve = \ef - Vdc [D-6] 

Auxiliary signals from the rate feedback network or other sources are 

also fed into the comparator and may be considered as changes in the 

reference voltage 

3. Amplifier 

The error voltage, Vg, is amplified by some means, for example, a 

rotating, magnetic or electronic amplifier, and then used to drive the 

exciter. Linear voltage amplification is assumed with time constant 

T^. The transfer function is 

•VR - TT-r—Ê— [D-7] 
1 + sT A 

Amplifier saturation is represented by limiting, that is 

min ^ ̂ R ^R max 

4. Exciter 

The exciter is represented as shown in Figure 73 where Sg is a 

function of Ep^ and represents the effects of saturation. The transfer 

function for the exciter is 
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5. Rate feedback compensator 

The performance of the excitation system can be stabilized by using 

rate feedback compensation to decrease system gain during transients. A 

transfer function representing this feedback is 

'rat. - t°-«i 

6. Bridged-T filter 

The transfer function of a bridged-T network may be written as (104) 

£ , + rn [D-io] 
K 2 , 2 

s + n u)QS + UQ 

where is the frequency where the notch is to occur, r is the notch 

ratio, i.e., the ratio of the amplitude at to the amplitude at zero 

frequency, and n is the relative width of the notch. 

The filter produces two zeros located at 

-rn Wg ± Wg y(rn)2 -4 
[D-11] 

and two poles at 

-n Wg ± Wg V n - 4 J -

An analog computer diagram for implementation of a transfer function 

having the form of Equation D-10 is given in Appendix B of (39) . The 

resulting analog computer diagram for a bridged-T network is shown in 

Figure 78. 
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LC 

OH 
rÔ— 

HZ) 

Figure 78. Analog computer diagram for a bridged-T filter 

T,/Z 

I/T 

o-
I/T 

K> 

T. - T 
I/To 

Figure 79. Analog computer diagram for a power system stabilizer 
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7. Power system stabilizer 

The transfer function for a power system stabilizer is 

Ks 
(1 + st̂ ) (1 + st̂ ) 

R " 1 + sT (1 + sTg) (1 + sTg) 
[D-12] 

The analog computer diagram for this transfer function is again developed 

using (39) and the result is shown in Figure 79. 

8. Two-stage lead-lag network 

The power system stabilizer contains a two-stage lead-lag network so 

a transfer function for the latter can be obtained from Equation D-12 

by omitting the first factor. The associated analog computer diagram is 

shown in Figure 80. 

9. Speed feedback compensation networks 

The transfer function necessary to cancel the torque-angle loop and 

field poles using speed feedback was previously shown to be 

The analog computer simulation of this transfer function is again 

developed using Appendix B of (39). The resulting analog computer 

diagram is shown in Figure 81 part (a). The compensator used to cancel 

the torque-angle loop poles only has a transfer function of the following 

form. 

Cs - IdI 
As + B 

The resulting analog computer diagram is shown in Figure 81 part (b) . 
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i— 

-CH 
t, a 

T,-T-
T.-T, 

i/t2 
I/T, 

Figure 80. Analog computer diagram for a two-stage lead-lag network 

(a) 

D/B 

o i>rî> 

(b) 
B/A+IQ# 

Figure 81. Analog computer diagrams for speed feedback compensators: 
(a) used to cancel torque-angle loop poles and field pole, 
(b) used to cancel torque-angle loop poles 
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XIII. APPENDIX E. ANALOG COMPUTER REPRESENTATION 

In this appendix the data used for the analog computer studies of 

Chapter V are presented. Tables of potentiometer settings are given and 

the final analog computer diagram showing the interconnections of various 

components is also included. All values are in per unit unless otherwise 

noted. 

A. Data 

Generator (7) 
1.70 

1.64 

0.15 
La d  = 1 - 5 5  

d̂ -

h : 

If. 
Lt — 

1.49 
0.101 
1.65 

H. 

'do 

= 2.37 sec 
= 5.90 sec 

Exciter 

Ka 

I i 
KP 

TP 

^R max = 

^R min 

(94) 
: 400 

= 0 .02 
• 0.015 sec 
: 1.0 
: 0.04 
: 0.05 
:  8 .26 
: 8 .26  

sec 

sec 

Governor (17) 
Tsr = 0.05 sec 

ŝm = 0.15 sec 
Tg = 0.10 sec 

Power system stabilizer (31) 
T =3.0 sec 

Two-stage lead-lag network 
T^ = 0.2 sec 

d̂ = 
Ld = 
£q = 
LQ = 
r = 

rp = 
d̂ = 

0.055 

1.605 

0.036 
1.526 
0.001126 
0.00805 

0.0132 

E max 
^E 0.75 min 

k R 
''FD max 

0.86 
0.50 
0 . 0  
1.0 
4.45 

sec 

Tpu = 10.0 sec 
f^ = 0.23 

~ 0.7 

Ti = 0.2 sec 

T2 = 0.05 sec 

Bridged-T (104) tuned to natural frequency of machine 
• n = 2 Uq = 21 rad/sec 

? 

%d 
Lmq 

0.0198 

100 
0.02818 
0.02846 

Cg = 20 

T2 = 0.05 sec 

r  = 0 . 1  
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Potentiometer settings for the synchronous machine, excitation 

system, governor, and the compensation networks are given in Tables 8, 

9, 10 and 11. The analog computer diagram is shown in Figure 82. 

Analog switches are provided for changing voltage and torque reference 

levels and for inserting the various compensation networks. Potentiom­

eters normally used to supply initial conditions to the integrators are 

omitted to conserve analog computer components. Initial conditions are 

established as follows. 

The speed is held constant when the simulation is started by holding 

integrator 210 in IC. Flux linkages are allowed to build up, and after 

steady-state conditions have been established, amplifier 210 is allowed to 

integrate. Switch 411 is then closed applying load to the machine. 

Positive or negative increments of machine loading are accomplished by 

switching Oil to the right or left respectively. 

A similar arrangement using switch 021 allows incremental changes 

in the voltage reference level which is established by potentiometer 613. 

The squaring and square root circuitry necessary to generate the terminal 

voltage v^ is somewhat noisy, so amplifier 610 is used as a filter to 

reduce the noise level. A 0.001 yf feedback capacitor is connected in 

the feedback path of amplifier 610 by appropriate logic patching. 

Components used in the two-stage lead-lag network placed in the 

forward loop of the exciter are also used in the power system stabilizer. 

The governor is omitted due to lack of analog computer components. 

Although they are not essential to the basic simulation, two 

additional quantities are computed. The electrical power output of the 

machine is available at amplifier 213 and the change in terminal voltage 
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000 

001 

002 

003 

010 

Oil 

012 

013 

100 

101 

102 

103 

110 

111 

112 

113 

Potentiometer settings for synchronous machine 

Potenti­
ometer 
settings 

Amplifier 
gain Constant 

Numerical 
substitutions Value ScalinR 

0.0283 1 rwb/&a .001126(377)/.15 2.8300 50/50x1/100=0.010 

0.9040 1 rjjoib/ &d .0132(377)/.055 90.400 50/50x1/100=0.010 

0.6960 1 Lmi)/&f .02818/.101 0.2785 50/20=2.500 

0.2665 10 l/&a 1/.15 6.6660 20/50=0.400 

0.0283 1 rwb/&a .001126(377)/.15 2.8300 50/50x1/100=0.010 

0.2070 10 rqug/jlq .0198(377)/.036 207.00 50/50x1/100=1.000 

0.7906 1 .02846/.036 0.7906 50/50=1.000 

0.2665 10 6.6660 20/50=0.400 

0.4710 10 377.00 50/40x1/100=0.0125 

0.9040 1 ruoig/&d 90.400 50/50x1/100=0.010 

0.5120 1 .02818/.055 0.5120 50/50=1.000 

0.2665 10 1/la 6.6660 20/50=0.400 

0.4710 10 377.00 50/40x1/100=0.0125 

0.2070 10 207.00 50/50x1/100=0.010 

0.0050 1 R 100. 100.00 40/20=2.000 

0.0050 1 R 100. 100.00 40/20=2.000 
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Table 8 (Continued) 

Potenti- Potenti­
ometer ometer Amplifier 
number settings gain Constant 

200 0.7540 10 wb 

201 0.1212 .1 rpuig/î-p 

202 0.1879 1 

210 0.7540 10 olg 

211 0.0283 1 rojb/s-a 

212 0.5000 1 Wg/WB 

213 0.1000 1 L.C. 

300 0.0283 1 

301 0.3030 .1 fF^g/kp 

302 0.0778 .1 wgxbase change 

303 0.1055 1 p/ 2  1 / 2 H  

400 0.0188 10 

401 0.4710 10 Wb/le 

402 0.7540 10 

403 0.4710 10 ojr/lE 

410 0.2160 1 57.3w% 

Numerical 

substitutions Value Scaling 
Value X 
scaling 

.000805(377)/.101 

.02818/.15 

.001126(377)/.15 

1 

.001126(377)/.15 

377(162v/157KV) 

1/2 (2.37) 

.02(377)/.4 

377/.4 

57.3(377) 

377.00 50/25x1/100=0,020 7. 5400 

3.0300 20/50x1/100=0.004 0. 01212 

0.1879 50/50=1.000 0. 1879 

377.00 50/25x1/100=0.020 7.5400 

2.8300 50/50x1/100=0.010 0. 0283 

1.0000 50/100=0.500 0. 5000 

1.0000 50/500=0.100 0. 1000 

2.8300 50/50x1/100=0.010 0. 0283 

3.0300 20/20x1/100=0.010 0. 0303 

0.3890 20/10x1/100=0.020 0. 00778 

0.2110 500/10x1/100=0.500 0. 1055 

18.850 20/20x1/100=0.010 0. ,1885 

944.00 20/40x1/100=0.005 4. ,7100 

377.00 20/10x1/100=0.020 7, .5400 

944.00 20/40x1/100=0.005 4, ,7100 

21,600 .5/500x1/100=10"^ 0, .2160 
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Table 8 (Continued) 

Potent! Potent!-
ometer 
number 

ometer 
settings 

Amplifier 
gain Constant 

Numerical 
substitutions Value Scaling 

Value X 
scaling 

412 0.1897 1 .02846/.15 0.1897 50/50x1=1.000 0.1897 

413 0.2665 10 l/%a 6.6660 20/50x1=0.400 2.6650 

500 0.3264 10 3(377)7.4 1632.0 20/100x1/100=0.002 3.2640 

501 0.7540 10 a)b 377.00 20/10x1/100=0.020 7.5400 

502 0.3264 10 1632.0 20/100x1/100=0.002 3.2640 

503 0.0188 10 18.850 20/20x1/100=0.010 0.1885 

612 0.0291 1 5% full load 

613 0.5905 1 full load 

610 0.0300 1 10% full : load .3 pu 0.3000 10/100=0.100 0.0300 

611 0.3000 1 full load % 3 pu 3.0000 10/100=0.100 0.3000 
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Table 9. Potentiometer settings for excitation system 

Potentl- Potentl-
ometer 
number 

ometer 
settings 

Amplifier 
gain Constant 

Numerical 
substitutions Value Scaling 

Value X 
scaling 

600 0.0200 1 L.C. 1.0 100/50x1/100=0.020 0.0200 

602 0.9990 10 l/Tp 1/.05 20.000 50/100=0.500 10.000 

701 0.5000 1 l/T^ 1/.02 50.000 1/1x1/100=0.010 0.5000 

800 0.4000 10 KA/TA 400/.02 20,000 1/50x1/100=0.0002 4.0000 

801 0.6667 10 1/Te 1/.015 66.670 10/1x1/100=0.100 6.6670 

802 0.6667 1 1/Te 1/.015 66.670 10/10x1/100=0.010 0.6667 

803 0.6667 1 1.0/.015 66.670 10/10x1/100=0.010 0.6667 

810 0.7210 1 L.C. i/yr 0.5770 50/40x1=1.250 0.7210 

812 0.4000 10 .04/.05 0.8000 50/10=5.000 4.0000 

813 0.5000 10 L.C. 1.0000 50/10=5.000 5.0000 
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Table 10. Potentiometer settings for governor 

Potenti- Potenti-
ometer 
number 

ometer 
settings 

Amplifier 
eain Constant 

Numerical 
substitutions Value Scaling 

Value X 
scaling 

222 0.1400 10 Kg/TGR 20X.7 14.000 10/1x1/100=.100 1.4000 

233 0.0667 1 1/tsm 6.6667 6.6670 10/10x1/100=.010 0.0667 

020 0.1000 1 1/Tb 10.000 10.000 10/10x1/100=.010 0.1000 

230 0.1000 1 1/TB 10.000 10.000 10/10x1/100=.010 0.1000 

220 0.2000 1 20.000 20.000 10/10x1/100=.010 0.2000 

223 0.2300 1 f 0.23 0.23 . 10/10=1.00 0.2300 

232 0.4000 10 cg 20 20 1/50=.020 0.4000 

221 0.0667 1 6.666 6.666 10/10x1/100=.010 0.0667 

231 0.0010 1 .1 .1 10/10x1/100=.010 0.0010 

203 

610 

611 

0.2000 

0.0045 

0.0452 

^ref corresponding to Tg, = 

Wref corresponding to = 

"ref corresponding to = 

0 

0.3 

3.0 
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Table 11. Miscellaneous potentiometer settings 

Potenti- Potenti­
ometer ometer Amplifier Numerical 
number settings gain Constant substitutions 

Power system stabilizer 

021 0.0333 .1 1/T 1/3 

220 0.0333 .1 1/T 1/3 

221 0.2000 1 l/Tg 1/.05 

222 0.0400 1 I1/T2 .2/.05 

223 0.0400 1 .2/.05 

230 0.1500 10 (.2-.05)/.2(.05) 

231 0.2000 1 i/i2 1/.05 

232 0.1500 10 T1-T2/T1T2 (.2-.05)/.2(.05) 

601 0.5000 

fo-stage lead-lag network 

221 0.2000 1 l/Tg 1/.05 

222 0.4000 1 T1/T2 .2/.05 

223 0.4000 1 T1/T2 .2/.05 

230 0.1500 

Value Scaling 
Value X 
scaling 

0.3330 500/500x1/100= .010 .00333 

0.3330 500/500x1/100= .010 .00333 

20.000 500/500x1/100= .010 0.2000 

4.000 50/50x1/100= .010 0.0400 

4.000 500/500x1/100= .010 0.0400 

15.000 5/50= .100 1.5000 

20.000 50/50x1/100= .010 0.2000 

15.000 50/500x1= .100 1.5000 

20.000 10/10x1/100= .010 0.2000 

4.0000 10/1x1/100= .100 0.4000 

4.0000 10/1x1/100= .100 0.4000 
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Table 11 (Continued) 

Potentl- Potenti­
ometer ometer Amplifier 
number settings gain Constant 

Two-stage lead-lag network 

231 0.2000 1 l/Tg 

232 0.1500 10 T1-T2/T1T2 

Bridged-T network 

022 0.1000 1 L.C. 

023 0.0100 1 L.C. 

030 0.1167 1 Wq/n-r 

031 0.4200 1 oj^n 

032 0.3780 10 

Infinite bus modulator 

020 0.0441 1 

203 0.5000 IC L.C. 

033 0.8280 1 1 

233 0.0332 1 .02 

Numerical 
substitutions Value Scaling 

Value X 
scaling 

1/.05 20.000 

(.2-.05)/.2(.05) 15.000 

1 1.0000 

1 1.0000 

21/(2-.2) 11.670 

21(2) 42.000 

21(2)(l-.l) 37.800 

21^ 441.00 

1 1.0 

1 1.0 

.02 0.02 

10/10x1/100=.010 0.2000 

1/10=.100 1.5000 

40/4x1/100=.100 0.1000 

40/40x1/100=.010 0.0100 

40/40x1/100=.010 0.1167 

40/40x1/100=.010 0.4200 

4/40x1=.100 3.7800 

50/50x1/100^=.0001 0.0441 

50/100=.500 0.5000 

• 82.8/100=.828 0.8280 

82.8/50=1.65 0.0332 
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Table 11 (Continued) 

Potenti­
ometer 
number 

Potenti­
ometer 

settings 
Amplifier 

gain 

Numerical 
Constant substitutions Value Scaling 

Value x 
scaling 

Speed compensation used to cancel torque-angle loop and field poles 

020 0.0164 0.1 B/A .425/2.59 0.164 1/100=0.010 0.00164 

233 0.1840 10 D/B -782/.425 -1840 50/500x1/100=0.001 1.8400 

Speed compensation used to cancel torque-angle loop poles 

020 0.0288 1 B/A 4.84/1.68 2.88 50/50x1/100=0.010 0.0288 

021 0.1000 1 L.C. 1.00 1.00 50/500=0.100 0.1000 

233 0.1370 1 B/A+ 1D1 /C 4.84/1.68+506.4/3.76 137.38 50/500x1/100=0.001 0.1370 

601 0.2240 10 C/A 3.76/1.68 2.24 50/50=1.000 2.2400 
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is produced at amplifier 411. Excitation system rate feedback is 

removed by setting potentiometers 812 and 813 to zero or by removing the 

connection from the output of amplifier 812 to the input of amplifier 813. 

The time scaling factor, a, for the simulation was 100. Thus, one 

second of synchronous machine operation is represented by 100 seconds of 

analog computer time if the simulation is operated at the medium-second 

speed. Normally it was found desirable to speed up the analog computer 

simulation by a factor of ten so the computer was operated in the fast-

second mode. Thus, one second of synchronous machine operation is 

equivalent to 10 seconds of operation on the analog computer. 

While establishing the initial conditions of the simulation the 

analog computer was operated at milliseconds slow speed to minimize the 

time necessary to establish a steady-state condition. The time mode 

was then switched to fast or medium seconds and the particular test was 

then conducted. The simulation would not operate at millisecond medium 

or fast speeds, thus oscilloscope displays and the repetitive operation 

mode could not be used to optimize parameters. All variables were 

observed and recorded using the digital voltmeter and a strip chart 

recorder. 

Figure 83 shows the analog computer simulation of the governor 

control system. Potentiometer settings are given in Table 10. 

The analog computer circuitry necessary to modulate the Infinite 

bus voltage is shown in Figure 84 and potentiometer settings are given 

in Table 11. These values result in the Infinite bus voltage being set 

at a value corresponding to Base Case 1. The modulation increases and 

decreases the infinite bus voltage by 2% peak at a frequency 
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N3 nj 
00 

(50) 

Figure 83. Analog computer diagram of governor control system 
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• 100 

-lot©"' 

Figure 84. Analog computer diagram of circuit used to modulate infinite 
bus voltage 

(a) (500) (50) 

(b) a 802 

Figure 85. Analog computer diagrams of speed feedback compensation 
networks: (a) cancellation of torque-angle loop poles 
and field pole, (b) cancellation of torque-angle loop pole 
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approximately equal to that of the uncompensated machine for the given 

potentiometer values. 

Potentiometer settings for the speed feedback network used to cancel 

the torque-angle loop plus the field pole and the torque-angle loop poles 

alone are also given in Table 11. The analog computer diagrams for these 

compensators are shown in Figure 85. 

B. Base Case Calculations 

Two test cases have been calculated for the synchronous machine. In 

the first, the machine was assumed to be operating at rated conditions, 

that is, full load, 0.85 power factor lagging, and terminal voltage equal 

to 1.0 pu. This case provided a means of checking nameplate quantities 

against model performance under steady-state conditions and also provided 

a check on the excitation system since full load field current is given 

in the machine specifications. The machine was connected through a 

transmission line having Z = 0.02 + j.4 pu impedance to an infinite bus 

with its voltage adjusted so that the machine delivered rated power at 

rated power factor and rated terminal voltage. 

The second test case was intended to represent the operating 

conditions of a fully loaded machine supplying power over a long 

transmission line. The loading was the same as in Base Case 1, that is, 

rated power output at 0.85 pf lagging, and the same tie line impedance 

was used. The infinite bus voltage was set at 1.0 pu and the terminal 

voltage was then adjusted to obtain the desired var loading. 

Hand calculations for these two cases were made and the results. 
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along with digital and analog computer outputs, are summarized in Table 

12 for Case 1 and in Table 13 for Case 2. 

Figure 86 is similar to Figure 82 except the voltages (in volts) at 

the outputs of various analog computer components have been added. These 

voltages result from establishing conditions of Base Case 1 and allowing 

the simulation to come to a steady-state condition. Figure 87 shows the 

voltages resulting from the establishment of Base Case 2 conditions on 

the machine. 

The dynamic performance of the synchronous machine without excita­

tion and governing systems is shown in Figures 88, 89 and 90. Excitation 

was adjusted to produce machine loading as in Base Case 1. After estab­

lishing steady-state conditions the mechanical torque was increased from 

zero to 3.0 pu (full load). T^g was then increased and decreased by ten 

percent of full load. Next the voltage reference was increased and 

decreased by five percent and finally T^ was reduced to zero. 

The variable is shown on the left and the scale factor is shown on 

the right. The width of one strip chart recording is 50 lines. Extreme 

left and right portions of the graphs indicate zero voltage levels. The 

positive direction is upward, and the distance between downward timing 

marks corresponds to one second of synchronous machine operation. The 

various references were switched at the same relative times in each of 

the figures. Thus the three figures are in effect a strip chart record­

ing 24 channels wide. 

Figures 91 and 92 show the dynamic performance of the synchronous 

machine with both exciter and governor control systems included. Excita­

tion system rate feedback was included because the uncompensated system 
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Table 12. Base Case 1 

Variable 

Hand 
computation 

p" 

Digital 
computer 

pu 

Analog computer 
Analog 

computer Voltage Per 
component volts unit 

pl(j, 

qi* 

'ref 

V Babc 

todq 

^tabc 

td 

^dt 

^tabc 

^ad 

^aq 

ad 

1.0 

0.62 

1.00805 

0.828 

1.732 

1.0 

-1.09 

1.342 

0.00239 

2.31 

-1.921 

0.664 

2.975 

0 . 0  

0 . 0  

1.176 

1.630 

0.989 

1.342 

1.0 

0.62 

0.828 

1.732 

1.0 

-1.093 

1.343 

-1.927 

0.666 

A200 

A023 

A232 

A610 

A412 

A413 

A004 

A003 

A013 

A014 

A214 

A002 

A012 

A511 

50.48 

82.80 

82.80 

69.40 

-43.60 

53.95 

25.12 

-38.35 

13.39 

-38.14 

13.12 

81.90 

49.56 

67.45 

1.008 

0.828 

0.828 

1.732 

-1.090 

1.346 

2.512 

1.918 

0.668 

-1.908 

0.656 

1.636 

0.992 

1.348 
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Table 12 (Continued) 

Analog computer 

Variable 

Hand 
computation 

PU 

Digital 
computer 

PU 

Analog 
computer 
component 

Voltage 
volts 

Per 
unit 

1.089 AOlO 54.58 1.092 

1.930 A201 39.19 1.956 

1.630 AOOl 81.90 1.638 

'Q 
0.989 AOll 49.59 

Tm 3.0 3.0 A410 30.00 3.000 

2.981 A213 14.97 2.995 

0) 1.0 1.0 A513 50.00 1.000 

A(o 0.0 A210 0.00 0.000 

6 67.1* 67.047° A714 33.25 66.5* 

VR 3.66 A800 3.53 3.530 

Ye 0.00805 A802 0.45 0.009 

^•rntp 0.0 A812 0.00 0.000 
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Table 13. Base Case 2 

Variable 

Hand 
computation 

m 

Digital 
computer 

PU 

Analog computer 

Analog 
computer 
component 

Voltage 
volts 

Per 
unit 

''U 

ql* 

'ref 

V 
Babc 

todq 

V, tabc 

F 

®FD 

id 

i q 

ip 

idt 

^tabc 

Xad 

^aq 

ad 

1.0 

0.62  

1.1808 

1.0 

2.030 

1.172 

-1.145 

1.672 

0.00227 

2.195 

-1.589 

0.698 

2.820 

0 .0  

0 .0  

1.002 

1.914 

1.042 

1.675 

1.0 

0.62 

1.0 

2.031 

1.172 

-1.148 

1.675 

-1.591 

0.700 

A200 

A023 

A232 

A610 

A412 

A413 

A004 

A003 

A013 

A014 

A214 

A002 

A012 

A511 

59.04 

100.00 

100.00 

81.20 

-49.05 

64.65 

27.27 

-33.76 

13.70 

-33.52 

13.38 

93.38 

50.77 

80.76 

1.182 

1.000 

1.000 

2.030 

-1.226 

1.610 

2.727 

1.688 

0.685 

-1.678 

0.668 

1.866 

1.030 

1.613 
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Table 13 (Continued) 

Analog computer 

Hand Digital Analog 
computation computer computer Voltage Per 

Variable pu pu component volts unit 

'q 1.147 AOlO 55.92 1.118 

2.200 A201 44.35 2.218 

1.914 AOOl 93.37 1.868 

1.042 AOll 50.81 1.016 

tm 3.0 A410 29.99 2.999 

fe 2.995 A213 14.96 2.990 

w 1.0 A513 50.00 1.000 

Ao) 0.0 A210 0.00 0.000 

6 53.8* A714 28.78 57.5° 

tr 3.045 A800 3.84 3.840 

^e 0.0076 A802 0.50 0.010 

^rate 0.0 A812 0.00 0.000 
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Figure 86.  Steady-state voltages under conditions of Base Case 1 
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Figure 87. Steady-state voltages under conditions of Base Case 2 
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Figure 88. Synchronous machine dynamic operation 
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www.manaraa.com

240 

2V/L 

2V/L q 

2V/L d 
• 

' I ' 

2V/L 

2V/L dt 

2v/L 

2v/L 

2v/L 

j _ l  

Figure 90. Synchronous machine dynamic operation 
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Figure 91. Synchronous machine with exciter and governor 
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Figure 92. Synchronous machine with exciter and governor 
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was unstable. The voltage reference was adjusted to a value corresponding 

to Base Case 1. The speed reference was initially adjusted to produce a 

zero load on the machine. 

The strip chart recordings show the result of changing the speed 

reference from the initial setting to one producing full load on the 

machine, then increasing and decreasing the speed reference to change 

the machine load by ± 10% of full load. Next the voltage reference was 

increased and decreased by 5%, and finally the speed reference was 

returned to a value producing zero machine loading. 

The various reference levels were again switched at the same rela­

tive times resulting in a strip chart recording which is effectively 16 

channels wide. Note that due to the long settling time of excitation 

rate feedback the strip chart recorder was operated at a slower chart 

speed. The distance between two downward timing marks still represents 

one second of synchronous machine operation. 

The phase relationships for a signal propagating through the machine 

were also recorded. Figure 93 shows the signal in various parts of the 

simulation with the two-stage lead-lag network in the exciter forward 

loop, the bridged-T in the regulator loop and speed feedback through a 

gain. The machine was operated under conditions of Base Case 1 and the 

output of the oscillator used to modulate the infinite bus voltage was 

fed into amplifier 200. 

Figure 94 shows similar results for the uncompensated system. The 

above compensation networks were originally in the circuit. The simula­

tion was then started and a steady-state condition corresponding to Base 

Case 1 was established. All compensation was then removed. This 
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Figure 93. Phase relationships after lead-lag, bridged-T and speed 
compensation 
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Figure 94* Phase relationships In uncompensated synchronous machine and 
exciter 
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particular loading condition with no compensation was unstable so the 

oscillator used above was not needed. Note the change in strip chart 

recorder speed. The downward timing marks again represent one second of 

synchronous machine operation. 
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